Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +238 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 명절선물 동원참치 S12호 참치선물세트 설선물 한가위 동원참치 S12호 제이에스포
|
14 |
+
- text: 동원참치 덕용 업소용 대용량 덕용 참치 1.88kg 주식회사 이너피스(inner peace)
|
15 |
+
- text: 사조 자연산 골뱅이 400g 주식회사 당장만나
|
16 |
+
- text: 목우촌 뚝심 340g 장보고가
|
17 |
+
- text: 농심 알쿠니아 황도 2절 통조림 850g 알쿠니아 황도 통조림 200g x 3개입 지에스(GS) 금성상회
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: metric
|
31 |
+
value: 0.9854036341971999
|
32 |
+
name: Metric
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 9 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 6.0 | <ul><li>'그린올리브 365g 동서 리치스 올리브 샐러드 화남F.C'</li><li>'동서 리치스 슬라이스 오이피클 3kg 무성유통'</li><li>'리치스 슬라이스 오이피클 3kg 피클 화남F.C'</li></ul> |
|
66 |
+
| 3.0 | <ul><li>'CJ제일제당 스팸12호 1세트 위드'</li><li>'CJ제일제당 스팸 복합 5호 선물세트 보담유통'</li><li>'스팸복합5호 햄 카놀라유 선물세트 복합 명절 추석 세트 땡그리나'</li></ul> |
|
67 |
+
| 4.0 | <ul><li>'동원 스위트콘 340g 골든 동원 저스트 스위트콘 340g(리뉴얼) 중앙 리테일'</li><li>'오뚜기 스위트콘 옥수수통조림 340g 스위트콘 340g x 1개 주식회사 로씨네'</li><li>'동서 리치스 홀커널 스위트콘 425g 원터치 옥수수 캔 통조림 주식회사 당장만나'</li></ul> |
|
68 |
+
| 7.0 | <ul><li>'스팸 마일드 25% 라이트 340g 외 스팸 4종 1. 스팸 클래식 200g 주식회사 하포테크'</li><li>'CJ제일제당 스팸 싱글 클래식 80g CJ제일제당 스팸 싱글 25% 라이트 80g 삼영유통'</li><li>'통조림 CJ제일제당 스팸 클래식 200g/햄통조림 ~통조림/캔햄_쿡샵 스위트콘 (태국산) 420g 단비마켓'</li></ul> |
|
69 |
+
| 2.0 | <ul><li>'샘표 김치찌개용꽁치280g/김치찌개전용꽁치통조림 주식회사 달인식자재'</li><li>'샘표 고등어 원터치 400g 조이텍'</li><li>'통조림 오뚜기 고등어 400g/참치캔 ~150g이상참치_동원 고추참치 150g 모두유통주식회사'</li></ul> |
|
70 |
+
| 1.0 | <ul><li>'화풍 양송이 편 2.8Kg 다유몰'</li><li>'디벨라 렌틸스 400g /렌즈콩 (주)푸드올마켓'</li><li>'몬 코코넛밀크 400ml 02_콕_코코넛밀크_400ml 정앤남'</li></ul> |
|
71 |
+
| 0.0 | <ul><li>'유동 자연산 골뱅이 230g /s/ 번데기 술안주 비빔면 소면 무침 국수 야식 통조림 (주)강남상사'</li><li>'동원에프앤비 동원 자연산 골뱅이 230g 주식회사 진현유통'</li><li>'자연산 골뱅이캔삼포140g 스완인터내셔널'</li></ul> |
|
72 |
+
| 5.0 | <ul><li>'동원참치 고추참치 통조림 100g 동원 참치 12종_17.동원 고추 참치 150g (주)다누림글로벌'</li><li>'오뚜기 참치빅캔 살코기 1.88kg 플랜트더퓨처'</li><li>'동원 참치 3kg 대용량 참치캔 업소용 코스트코 태양팜스'</li></ul> |
|
73 |
+
| 8.0 | <ul><li>'샘표 통조림캔 황도 400g 조림용고등어 400g (주)두배로'</li><li>'동서 리치스 파인애플 슬라이스 836g (주)푸드팜'</li><li>'동서 리치스 후르츠칵테일 3kg 미동의 제이모리'</li></ul> |
|
74 |
+
|
75 |
+
## Evaluation
|
76 |
+
|
77 |
+
### Metrics
|
78 |
+
| Label | Metric |
|
79 |
+
|:--------|:-------|
|
80 |
+
| **all** | 0.9854 |
|
81 |
+
|
82 |
+
## Uses
|
83 |
+
|
84 |
+
### Direct Use for Inference
|
85 |
+
|
86 |
+
First install the SetFit library:
|
87 |
+
|
88 |
+
```bash
|
89 |
+
pip install setfit
|
90 |
+
```
|
91 |
+
|
92 |
+
Then you can load this model and run inference.
|
93 |
+
|
94 |
+
```python
|
95 |
+
from setfit import SetFitModel
|
96 |
+
|
97 |
+
# Download from the 🤗 Hub
|
98 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_fd21")
|
99 |
+
# Run inference
|
100 |
+
preds = model("목우촌 뚝심 340g 장보고가")
|
101 |
+
```
|
102 |
+
|
103 |
+
<!--
|
104 |
+
### Downstream Use
|
105 |
+
|
106 |
+
*List how someone could finetune this model on their own dataset.*
|
107 |
+
-->
|
108 |
+
|
109 |
+
<!--
|
110 |
+
### Out-of-Scope Use
|
111 |
+
|
112 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
113 |
+
-->
|
114 |
+
|
115 |
+
<!--
|
116 |
+
## Bias, Risks and Limitations
|
117 |
+
|
118 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
### Recommendations
|
123 |
+
|
124 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
125 |
+
-->
|
126 |
+
|
127 |
+
## Training Details
|
128 |
+
|
129 |
+
### Training Set Metrics
|
130 |
+
| Training set | Min | Median | Max |
|
131 |
+
|:-------------|:----|:-------|:----|
|
132 |
+
| Word count | 3 | 8.4489 | 22 |
|
133 |
+
|
134 |
+
| Label | Training Sample Count |
|
135 |
+
|:------|:----------------------|
|
136 |
+
| 0.0 | 50 |
|
137 |
+
| 1.0 | 50 |
|
138 |
+
| 2.0 | 50 |
|
139 |
+
| 3.0 | 50 |
|
140 |
+
| 4.0 | 50 |
|
141 |
+
| 5.0 | 50 |
|
142 |
+
| 6.0 | 50 |
|
143 |
+
| 7.0 | 50 |
|
144 |
+
| 8.0 | 50 |
|
145 |
+
|
146 |
+
### Training Hyperparameters
|
147 |
+
- batch_size: (512, 512)
|
148 |
+
- num_epochs: (20, 20)
|
149 |
+
- max_steps: -1
|
150 |
+
- sampling_strategy: oversampling
|
151 |
+
- num_iterations: 40
|
152 |
+
- body_learning_rate: (2e-05, 2e-05)
|
153 |
+
- head_learning_rate: 2e-05
|
154 |
+
- loss: CosineSimilarityLoss
|
155 |
+
- distance_metric: cosine_distance
|
156 |
+
- margin: 0.25
|
157 |
+
- end_to_end: False
|
158 |
+
- use_amp: False
|
159 |
+
- warmup_proportion: 0.1
|
160 |
+
- seed: 42
|
161 |
+
- eval_max_steps: -1
|
162 |
+
- load_best_model_at_end: False
|
163 |
+
|
164 |
+
### Training Results
|
165 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
166 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
167 |
+
| 0.0141 | 1 | 0.4416 | - |
|
168 |
+
| 0.7042 | 50 | 0.297 | - |
|
169 |
+
| 1.4085 | 100 | 0.1016 | - |
|
170 |
+
| 2.1127 | 150 | 0.0599 | - |
|
171 |
+
| 2.8169 | 200 | 0.0339 | - |
|
172 |
+
| 3.5211 | 250 | 0.0256 | - |
|
173 |
+
| 4.2254 | 300 | 0.0235 | - |
|
174 |
+
| 4.9296 | 350 | 0.0019 | - |
|
175 |
+
| 5.6338 | 400 | 0.0113 | - |
|
176 |
+
| 6.3380 | 450 | 0.0002 | - |
|
177 |
+
| 7.0423 | 500 | 0.0001 | - |
|
178 |
+
| 7.7465 | 550 | 0.0001 | - |
|
179 |
+
| 8.4507 | 600 | 0.0001 | - |
|
180 |
+
| 9.1549 | 650 | 0.0001 | - |
|
181 |
+
| 9.8592 | 700 | 0.0001 | - |
|
182 |
+
| 10.5634 | 750 | 0.0001 | - |
|
183 |
+
| 11.2676 | 800 | 0.0001 | - |
|
184 |
+
| 11.9718 | 850 | 0.0001 | - |
|
185 |
+
| 12.6761 | 900 | 0.0001 | - |
|
186 |
+
| 13.3803 | 950 | 0.0001 | - |
|
187 |
+
| 14.0845 | 1000 | 0.0001 | - |
|
188 |
+
| 14.7887 | 1050 | 0.0001 | - |
|
189 |
+
| 15.4930 | 1100 | 0.0001 | - |
|
190 |
+
| 16.1972 | 1150 | 0.0001 | - |
|
191 |
+
| 16.9014 | 1200 | 0.0 | - |
|
192 |
+
| 17.6056 | 1250 | 0.0001 | - |
|
193 |
+
| 18.3099 | 1300 | 0.0001 | - |
|
194 |
+
| 19.0141 | 1350 | 0.0001 | - |
|
195 |
+
| 19.7183 | 1400 | 0.0 | - |
|
196 |
+
|
197 |
+
### Framework Versions
|
198 |
+
- Python: 3.10.12
|
199 |
+
- SetFit: 1.1.0.dev0
|
200 |
+
- Sentence Transformers: 3.1.1
|
201 |
+
- Transformers: 4.46.1
|
202 |
+
- PyTorch: 2.4.0+cu121
|
203 |
+
- Datasets: 2.20.0
|
204 |
+
- Tokenizers: 0.20.0
|
205 |
+
|
206 |
+
## Citation
|
207 |
+
|
208 |
+
### BibTeX
|
209 |
+
```bibtex
|
210 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
211 |
+
doi = {10.48550/ARXIV.2209.11055},
|
212 |
+
url = {https://arxiv.org/abs/2209.11055},
|
213 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
214 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
215 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
216 |
+
publisher = {arXiv},
|
217 |
+
year = {2022},
|
218 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
219 |
+
}
|
220 |
+
```
|
221 |
+
|
222 |
+
<!--
|
223 |
+
## Glossary
|
224 |
+
|
225 |
+
*Clearly define terms in order to be accessible across audiences.*
|
226 |
+
-->
|
227 |
+
|
228 |
+
<!--
|
229 |
+
## Model Card Authors
|
230 |
+
|
231 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
232 |
+
-->
|
233 |
+
|
234 |
+
<!--
|
235 |
+
## Model Card Contact
|
236 |
+
|
237 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
238 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_fd",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b005e0d928b43769c87412f42b6ef2b09d515e32dfab80ee6b3611c7628fd8c
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d9b72d2a74727faa4f92bac1ec30303580d2069b4e8f3d296e0167c19798f02
|
3 |
+
size 56255
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|