mini1013 commited on
Commit
a8e5f16
·
verified ·
1 Parent(s): 310350c

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 명절선물 동원참치 S12호 참치선물세트 설선물 한가위 동원참치 S12호 제이에스포
14
+ - text: 동원참치 덕용 업소용 대용량 덕용 참치 1.88kg 주식회사 이너피스(inner peace)
15
+ - text: 사조 자연산 골뱅이 400g 주식회사 당장만나
16
+ - text: 목우촌 뚝심 340g 장보고가
17
+ - text: 농심 알쿠니아 황도 2절 통조림 850g 알쿠니아 황도 통조림 200g x 3개입 지에스(GS) 금성상회
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9854036341971999
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 9 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 6.0 | <ul><li>'그린올리브 365g 동서 리치스 올리브 샐러드 화남F.C'</li><li>'동서 리치스 슬라이스 오이피클 3kg 무성유통'</li><li>'리치스 슬라이스 오이피클 3kg 피클 화남F.C'</li></ul> |
66
+ | 3.0 | <ul><li>'CJ제일제당 스팸12호 1세트 위드'</li><li>'CJ제일제당 스팸 복합 5호 선물세트 보담유통'</li><li>'스팸복합5호 햄 카놀라유 선물세트 복합 명절 추석 세트 땡그리나'</li></ul> |
67
+ | 4.0 | <ul><li>'동원 스위트콘 340g 골든 동원 저스트 스위트콘 340g(리뉴얼) 중앙 리테일'</li><li>'오뚜기 스위트콘 옥수수통조림 340g 스위트콘 340g x 1개 주식회사 로씨네'</li><li>'동서 리치스 홀커널 스위트콘 425g 원터치 옥수수 캔 통조림 주식회사 당장만나'</li></ul> |
68
+ | 7.0 | <ul><li>'스팸 마일드 25% 라이트 340g 외 스팸 4종 1. 스팸 클래식 200g 주식회사 하포테크'</li><li>'CJ제일제당 스팸 싱글 클래식 80g CJ제일제당 스팸 싱글 25% 라이트 80g 삼영유통'</li><li>'통조림 CJ제일제당 스팸 클래식 200g/햄통조림 ~통조림/캔햄_쿡샵 스위트콘 (태국산) 420g 단비마켓'</li></ul> |
69
+ | 2.0 | <ul><li>'샘표 김치찌개용꽁치280g/김치찌개전용꽁치통조림 주식회사 달인식자재'</li><li>'샘표 고등어 원터치 400g 조이텍'</li><li>'통조림 오뚜기 고등어 400g/참치캔 ~150g이상참치_동원 고추참치 150g 모두유통주식회사'</li></ul> |
70
+ | 1.0 | <ul><li>'화풍 양송이 편 2.8Kg 다유몰'</li><li>'디벨라 렌틸스 400g /렌즈콩 (주)푸드올마켓'</li><li>'몬 코코넛밀크 400ml 02_콕_코코넛밀크_400ml 정앤남'</li></ul> |
71
+ | 0.0 | <ul><li>'유동 자연산 골뱅이 230g /s/ 번데기 술안주 비빔면 소면 무침 국수 야식 통조림 (주)강남상사'</li><li>'동원에프앤비 동원 자연산 골뱅이 230g 주식회사 진현유통'</li><li>'자연산 골뱅이캔삼포140g 스완인터내셔널'</li></ul> |
72
+ | 5.0 | <ul><li>'동원참치 고추참치 통조림 100g 동원 참치 12종_17.동원 고추 참치 150g (주)다누림글로벌'</li><li>'오뚜기 참치빅캔 살코기 1.88kg 플랜트더퓨처'</li><li>'동원 참치 3kg 대용량 참치캔 업소용 코스트코 태양팜스'</li></ul> |
73
+ | 8.0 | <ul><li>'샘표 통조림캔 황도 400g 조림용고등어 400g (주)두배로'</li><li>'동서 리치스 파인애플 슬라이스 836g (주)푸드팜'</li><li>'동서 리치스 후르츠칵테일 3kg 미동의 제이모리'</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Metric |
79
+ |:--------|:-------|
80
+ | **all** | 0.9854 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fd21")
99
+ # Run inference
100
+ preds = model("목우촌 뚝심 340g 장보고가")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:-------|:----|
132
+ | Word count | 3 | 8.4489 | 22 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:------|:----------------------|
136
+ | 0.0 | 50 |
137
+ | 1.0 | 50 |
138
+ | 2.0 | 50 |
139
+ | 3.0 | 50 |
140
+ | 4.0 | 50 |
141
+ | 5.0 | 50 |
142
+ | 6.0 | 50 |
143
+ | 7.0 | 50 |
144
+ | 8.0 | 50 |
145
+
146
+ ### Training Hyperparameters
147
+ - batch_size: (512, 512)
148
+ - num_epochs: (20, 20)
149
+ - max_steps: -1
150
+ - sampling_strategy: oversampling
151
+ - num_iterations: 40
152
+ - body_learning_rate: (2e-05, 2e-05)
153
+ - head_learning_rate: 2e-05
154
+ - loss: CosineSimilarityLoss
155
+ - distance_metric: cosine_distance
156
+ - margin: 0.25
157
+ - end_to_end: False
158
+ - use_amp: False
159
+ - warmup_proportion: 0.1
160
+ - seed: 42
161
+ - eval_max_steps: -1
162
+ - load_best_model_at_end: False
163
+
164
+ ### Training Results
165
+ | Epoch | Step | Training Loss | Validation Loss |
166
+ |:-------:|:----:|:-------------:|:---------------:|
167
+ | 0.0141 | 1 | 0.4416 | - |
168
+ | 0.7042 | 50 | 0.297 | - |
169
+ | 1.4085 | 100 | 0.1016 | - |
170
+ | 2.1127 | 150 | 0.0599 | - |
171
+ | 2.8169 | 200 | 0.0339 | - |
172
+ | 3.5211 | 250 | 0.0256 | - |
173
+ | 4.2254 | 300 | 0.0235 | - |
174
+ | 4.9296 | 350 | 0.0019 | - |
175
+ | 5.6338 | 400 | 0.0113 | - |
176
+ | 6.3380 | 450 | 0.0002 | - |
177
+ | 7.0423 | 500 | 0.0001 | - |
178
+ | 7.7465 | 550 | 0.0001 | - |
179
+ | 8.4507 | 600 | 0.0001 | - |
180
+ | 9.1549 | 650 | 0.0001 | - |
181
+ | 9.8592 | 700 | 0.0001 | - |
182
+ | 10.5634 | 750 | 0.0001 | - |
183
+ | 11.2676 | 800 | 0.0001 | - |
184
+ | 11.9718 | 850 | 0.0001 | - |
185
+ | 12.6761 | 900 | 0.0001 | - |
186
+ | 13.3803 | 950 | 0.0001 | - |
187
+ | 14.0845 | 1000 | 0.0001 | - |
188
+ | 14.7887 | 1050 | 0.0001 | - |
189
+ | 15.4930 | 1100 | 0.0001 | - |
190
+ | 16.1972 | 1150 | 0.0001 | - |
191
+ | 16.9014 | 1200 | 0.0 | - |
192
+ | 17.6056 | 1250 | 0.0001 | - |
193
+ | 18.3099 | 1300 | 0.0001 | - |
194
+ | 19.0141 | 1350 | 0.0001 | - |
195
+ | 19.7183 | 1400 | 0.0 | - |
196
+
197
+ ### Framework Versions
198
+ - Python: 3.10.12
199
+ - SetFit: 1.1.0.dev0
200
+ - Sentence Transformers: 3.1.1
201
+ - Transformers: 4.46.1
202
+ - PyTorch: 2.4.0+cu121
203
+ - Datasets: 2.20.0
204
+ - Tokenizers: 0.20.0
205
+
206
+ ## Citation
207
+
208
+ ### BibTeX
209
+ ```bibtex
210
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
211
+ doi = {10.48550/ARXIV.2209.11055},
212
+ url = {https://arxiv.org/abs/2209.11055},
213
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
214
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
215
+ title = {Efficient Few-Shot Learning Without Prompts},
216
+ publisher = {arXiv},
217
+ year = {2022},
218
+ copyright = {Creative Commons Attribution 4.0 International}
219
+ }
220
+ ```
221
+
222
+ <!--
223
+ ## Glossary
224
+
225
+ *Clearly define terms in order to be accessible across audiences.*
226
+ -->
227
+
228
+ <!--
229
+ ## Model Card Authors
230
+
231
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
232
+ -->
233
+
234
+ <!--
235
+ ## Model Card Contact
236
+
237
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
238
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fd",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b005e0d928b43769c87412f42b6ef2b09d515e32dfab80ee6b3611c7628fd8c
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d9b72d2a74727faa4f92bac1ec30303580d2069b4e8f3d296e0167c19798f02
3
+ size 56255
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff