mini1013 commited on
Commit
cef72a7
·
verified ·
1 Parent(s): 12807af

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 네이쳐리빙 모던 트롤리 스윙 3단 빨래바구니 E) ★한정특가★_E05간편보관접이식대야(S)_블루 서전통상
14
+ - text: 빨래방망이 다듬이방망이 2P세트 이불방 다듬잇방망이 신규A
15
+ - text: '[홈앤하우스]라탄 패턴 사각 햄퍼 80L 내추럴/단품 패션플러스'
16
+ - text: 빨래판 세면대 세라믹 매립형 가정용 발코니 세미빌트인 간이 개수대 4. A형 35x46 - 수전 별도 구매 고야글로벌
17
+ - text: 전동빨래건조대 베란다 건조대 전동 자동 천정 천장형 천장 T-V917Yahei텔레스코픽로드 데일바이
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9600729631130929
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 12 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 10.0 | <ul><li>'신발세척 브러쉬 싱크대 가벼운 다용도 브러시 실내화 푸른은하수마트'</li><li>'방글방글운동화솔5P 다용도솔 따뜻한마켓'</li><li>'신발닦이솔 아이디어 청소솔 화이트 에이치비상사'</li></ul> |
66
+ | 8.0 | <ul><li>'삼정 스마트세탁망 내복용 31x50cm 4441 장가요몰'</li><li>'무형광 국산 세탁망 맘스필 브라망 사각 원형 특대형 드럼세탁기 빨래망 사각XL-미세망 rodzina'</li><li>'고급형 세탁기 먼지망/이물질/먼지/세탁기 거름망 블루 레이어드컴퍼니'</li></ul> |
67
+ | 1.0 | <ul><li>'면마직류 고급 다리미풀 정전기방지 말표 말표다리미풀480ml 추가E'</li><li>'말표 다리미풀 다림질풀 뉴 스프레이 다리미용품 480ml 고급의류 다림풀 의류다림 MinSellAmount 종종걸음샵'</li><li>'키밍 핸드 스팀 다리미판 다리미 스폰지 장갑 상품선택_7403 삼각형 꼬부기 가게'</li></ul> |
68
+ | 6.0 | <ul><li>'다용도실 빨래판 세면대 속옷빨래 사각형 간이세면기 비 47x54 더드컨트리'</li><li>'[여름신상베스트]키높이빨래판 자스트데어(JUST THERE)'</li><li>'Per 빨래판 속 튼튼한 부드러운판 논슬립 손빨래 미끄럼방지 비누수납 일체형디자인 옷빨래 실용적인 대형_그레이 투베스트컴퍼니'</li></ul> |
69
+ | 5.0 | <ul><li>'집 소형 편리한 공간활용 미니행거-집게20p 접이식 폴딩 가정용 심플 스위트 가이 (sweet guy)'</li><li>'다용도 만능 신발정리 휴지집게 구두 물건 잡는 집게 미아앤미오 컴퍼니'</li><li>'접이식 미니행거-집게20p 폴딩 소형 공간활용 풍성한정원'</li></ul> |
70
+ | 9.0 | <ul><li>'세탁볼 실내건조세제 드럼 이용가능 매직클린 통돌이 행복나라'</li><li>'쇼핑추천 포함 양모볼 인기제품 건조기 키니툴 6P 파우치 핑쇼24'</li><li>'[1300K] 고슴도치 세탁볼 3개 세트 엔에이치엔위투 주식회사'</li></ul> |
71
+ | 4.0 | <ul><li>'키친아트 빨래 삶는 통 냄비 인덕션 빨래솥 삶숙이 32cm 3.키친아트 34cm(일반) 척척홀릭'</li><li>'삶순이 행주삶기 행주 냄비 스테인리스 삶기 22cm 빠른대행'</li><li>'키친아트 스팀빨래솥30CM ZW1E3205 윤지상회'</li></ul> |
72
+ | 0.0 | <ul><li>'일상드로우 다리미판 스팀다리미 스탠드 접이식 스팀다리미판 스탠드 다다마스'</li><li>'휴대용 핸드 스팀 다리미판 패드 장갑 핸드다리미판장갑 주식회사 아이니쥬'</li><li>'가담다 접이식 스팀 좌식 플립 다리미판 (스톤그레이/프리미엄블랙)/높이조절7단 다리미판 모음전 우마형 화이트 가담다공식스토어'</li></ul> |
73
+ | 7.0 | <ul><li>'캠핑용 빨래줄 여행용 빨랫줄 품 휴대용 용품 야외 건조 동그라미'</li><li>'스테인레스 빨래줄 이불 걸이대 스텐 빨랫줄 와이어 304 빨랫줄(10m) 버클세트 스마일_'</li><li>'빨래집게걸이 12P 빨레 집개 건조대 찝개 형 빨래 집게 연두 골드코스트'</li></ul> |
74
+ | 11.0 | <ul><li>'[판매순위1등] 삼성에어드레서 5벌 DF-FL 호환필터 팡스토리'</li><li>'부드러운 카카오프렌즈 기획전 차박 무릎 학생 잇템 캠핑 춘식이 사무실 담요 청춘유통'</li><li>'암앤해머 베이킹 소다 6.12kg x 2 세척 탈취 백두마켓'</li></ul> |
75
+ | 3.0 | <ul><li>'벽걸이 메쉬 빨래 바구니 벽걸이 메쉬빨래바구니(핑크) 위드주'</li><li>'친환경 플라스틱 라탄 대용량 특대형 빨래바구니 60L 2. 베이지 '</li><li>'빨래통 3단 트롤리 4단 이동식 스윙빨래바구니 세탁함 빨래바구니3단 사구있오'</li></ul> |
76
+ | 2.0 | <ul><li>'리빙나이스 천장건조대 스텐봉 200cm 소경환'</li><li>'삼덕기업 하드웰 PVC코팅봉 스텐봉 베란다 천장빨래건조대 스텐봉 표준형 까바짬'</li><li>'전동빨래건조대 발코니 베란다 천장형 조명 C 꾸대'</li></ul> |
77
+
78
+ ## Evaluation
79
+
80
+ ### Metrics
81
+ | Label | Metric |
82
+ |:--------|:-------|
83
+ | **all** | 0.9601 |
84
+
85
+ ## Uses
86
+
87
+ ### Direct Use for Inference
88
+
89
+ First install the SetFit library:
90
+
91
+ ```bash
92
+ pip install setfit
93
+ ```
94
+
95
+ Then you can load this model and run inference.
96
+
97
+ ```python
98
+ from setfit import SetFitModel
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SetFitModel.from_pretrained("mini1013/master_cate_lh13")
102
+ # Run inference
103
+ preds = model("빨래방망이 다듬이방망이 2P세트 이불방 다듬잇방망이 신규A")
104
+ ```
105
+
106
+ <!--
107
+ ### Downstream Use
108
+
109
+ *List how someone could finetune this model on their own dataset.*
110
+ -->
111
+
112
+ <!--
113
+ ### Out-of-Scope Use
114
+
115
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
116
+ -->
117
+
118
+ <!--
119
+ ## Bias, Risks and Limitations
120
+
121
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
122
+ -->
123
+
124
+ <!--
125
+ ### Recommendations
126
+
127
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
128
+ -->
129
+
130
+ ## Training Details
131
+
132
+ ### Training Set Metrics
133
+ | Training set | Min | Median | Max |
134
+ |:-------------|:----|:-------|:----|
135
+ | Word count | 3 | 9.8017 | 20 |
136
+
137
+ | Label | Training Sample Count |
138
+ |:------|:----------------------|
139
+ | 0.0 | 50 |
140
+ | 1.0 | 50 |
141
+ | 2.0 | 50 |
142
+ | 3.0 | 50 |
143
+ | 4.0 | 50 |
144
+ | 5.0 | 50 |
145
+ | 6.0 | 50 |
146
+ | 7.0 | 50 |
147
+ | 8.0 | 50 |
148
+ | 9.0 | 50 |
149
+ | 10.0 | 50 |
150
+ | 11.0 | 50 |
151
+
152
+ ### Training Hyperparameters
153
+ - batch_size: (512, 512)
154
+ - num_epochs: (20, 20)
155
+ - max_steps: -1
156
+ - sampling_strategy: oversampling
157
+ - num_iterations: 40
158
+ - body_learning_rate: (2e-05, 2e-05)
159
+ - head_learning_rate: 2e-05
160
+ - loss: CosineSimilarityLoss
161
+ - distance_metric: cosine_distance
162
+ - margin: 0.25
163
+ - end_to_end: False
164
+ - use_amp: False
165
+ - warmup_proportion: 0.1
166
+ - seed: 42
167
+ - eval_max_steps: -1
168
+ - load_best_model_at_end: False
169
+
170
+ ### Training Results
171
+ | Epoch | Step | Training Loss | Validation Loss |
172
+ |:-------:|:----:|:-------------:|:---------------:|
173
+ | 0.0106 | 1 | 0.4631 | - |
174
+ | 0.5319 | 50 | 0.4236 | - |
175
+ | 1.0638 | 100 | 0.2102 | - |
176
+ | 1.5957 | 150 | 0.114 | - |
177
+ | 2.1277 | 200 | 0.0733 | - |
178
+ | 2.6596 | 250 | 0.0541 | - |
179
+ | 3.1915 | 300 | 0.0316 | - |
180
+ | 3.7234 | 350 | 0.0104 | - |
181
+ | 4.2553 | 400 | 0.0098 | - |
182
+ | 4.7872 | 450 | 0.0039 | - |
183
+ | 5.3191 | 500 | 0.0026 | - |
184
+ | 5.8511 | 550 | 0.0002 | - |
185
+ | 6.3830 | 600 | 0.0002 | - |
186
+ | 6.9149 | 650 | 0.0001 | - |
187
+ | 7.4468 | 700 | 0.0001 | - |
188
+ | 7.9787 | 750 | 0.0001 | - |
189
+ | 8.5106 | 800 | 0.0001 | - |
190
+ | 9.0426 | 850 | 0.0001 | - |
191
+ | 9.5745 | 900 | 0.0001 | - |
192
+ | 10.1064 | 950 | 0.0001 | - |
193
+ | 10.6383 | 1000 | 0.0001 | - |
194
+ | 11.1702 | 1050 | 0.0001 | - |
195
+ | 11.7021 | 1100 | 0.0001 | - |
196
+ | 12.2340 | 1150 | 0.0001 | - |
197
+ | 12.7660 | 1200 | 0.0 | - |
198
+ | 13.2979 | 1250 | 0.0001 | - |
199
+ | 13.8298 | 1300 | 0.0001 | - |
200
+ | 14.3617 | 1350 | 0.0 | - |
201
+ | 14.8936 | 1400 | 0.0001 | - |
202
+ | 15.4255 | 1450 | 0.0 | - |
203
+ | 15.9574 | 1500 | 0.0001 | - |
204
+ | 16.4894 | 1550 | 0.0 | - |
205
+ | 17.0213 | 1600 | 0.0 | - |
206
+ | 17.5532 | 1650 | 0.0 | - |
207
+ | 18.0851 | 1700 | 0.0 | - |
208
+ | 18.6170 | 1750 | 0.0 | - |
209
+ | 19.1489 | 1800 | 0.0 | - |
210
+ | 19.6809 | 1850 | 0.0 | - |
211
+
212
+ ### Framework Versions
213
+ - Python: 3.10.12
214
+ - SetFit: 1.1.0.dev0
215
+ - Sentence Transformers: 3.1.1
216
+ - Transformers: 4.46.1
217
+ - PyTorch: 2.4.0+cu121
218
+ - Datasets: 2.20.0
219
+ - Tokenizers: 0.20.0
220
+
221
+ ## Citation
222
+
223
+ ### BibTeX
224
+ ```bibtex
225
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
226
+ doi = {10.48550/ARXIV.2209.11055},
227
+ url = {https://arxiv.org/abs/2209.11055},
228
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
229
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
230
+ title = {Efficient Few-Shot Learning Without Prompts},
231
+ publisher = {arXiv},
232
+ year = {2022},
233
+ copyright = {Creative Commons Attribution 4.0 International}
234
+ }
235
+ ```
236
+
237
+ <!--
238
+ ## Glossary
239
+
240
+ *Clearly define terms in order to be accessible across audiences.*
241
+ -->
242
+
243
+ <!--
244
+ ## Model Card Authors
245
+
246
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
247
+ -->
248
+
249
+ <!--
250
+ ## Model Card Contact
251
+
252
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
253
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_lh",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f4161708a9c42e493a78512fd7d41db61dc908844ad075aaebbd8ac477a63e2
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed312449dd52252bcd237d9727e26aa3452c71a75534eb6a979a720767241f73
3
+ size 74727
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff