Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +253 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 네이쳐리빙 모던 트롤리 스윙 3단 빨래바구니 E) ★한정특가★_E05간편보관접이식대야(S)_블루 서전통상
|
14 |
+
- text: 빨래방망이 다듬이방망이 2P세트 이불방 다듬잇방망이 신규A
|
15 |
+
- text: '[홈앤하우스]라탄 패턴 사각 햄퍼 80L 내추럴/단품 패션플러스'
|
16 |
+
- text: 빨래판 세면대 세라믹 매립형 가정용 발코니 세미빌트인 간이 개수대 4. A형 35x46 - 수전 별도 구매 고야글로벌
|
17 |
+
- text: 전동빨래건조대 베란다 건조대 전동 자동 천정 천장형 천장 T-V917Yahei텔레스코픽로드 데일바이
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: metric
|
31 |
+
value: 0.9600729631130929
|
32 |
+
name: Metric
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 12 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 10.0 | <ul><li>'신발세척 브러쉬 싱크대 가벼운 다용도 브러시 실내화 푸른은하수마트'</li><li>'방글방글운동화솔5P 다용도솔 따뜻한마켓'</li><li>'신발닦이솔 아이디어 청소솔 화이트 에이치비상사'</li></ul> |
|
66 |
+
| 8.0 | <ul><li>'삼정 스마트세탁망 내복용 31x50cm 4441 장가요몰'</li><li>'무형광 국산 세탁망 맘스필 브라망 사각 원형 특대형 드럼세탁기 빨래망 사각XL-미세망 rodzina'</li><li>'고급형 세탁기 먼지망/이물질/먼지/세탁기 거름망 블루 레이어드컴퍼니'</li></ul> |
|
67 |
+
| 1.0 | <ul><li>'면마직류 고급 다리미풀 정전기방지 말표 말표다리미풀480ml 추가E'</li><li>'말표 다리미풀 다림질풀 뉴 스프레이 다리미용품 480ml 고급의류 다림풀 의류다림 MinSellAmount 종종걸음샵'</li><li>'키밍 핸드 스팀 다리미판 다리미 스폰지 장갑 상품선택_7403 삼각형 꼬부기 가게'</li></ul> |
|
68 |
+
| 6.0 | <ul><li>'다용도실 빨래판 세면대 속옷빨래 사각형 간이세면기 비 47x54 더드컨트리'</li><li>'[여름신상베스트]키높이빨래판 자스트데어(JUST THERE)'</li><li>'Per 빨래판 속 튼튼한 부드러운판 논슬립 손빨래 미끄럼방지 비누수납 일체형디자인 옷빨래 실용적인 대형_그레이 투베스트컴퍼니'</li></ul> |
|
69 |
+
| 5.0 | <ul><li>'집 소형 편리한 공간활용 미니행거-집게20p 접이식 폴딩 가정용 심플 스위트 가이 (sweet guy)'</li><li>'다용도 만능 신발정리 휴지집게 구두 물건 잡는 집게 미아앤미오 컴퍼니'</li><li>'접이식 미니행거-집게20p 폴딩 소형 공간활용 풍성한정원'</li></ul> |
|
70 |
+
| 9.0 | <ul><li>'세탁볼 실내건조세제 드럼 이용가능 매직클린 통돌이 행복나라'</li><li>'쇼핑추천 포함 양모볼 인기제품 건조기 키니툴 6P 파우치 핑쇼24'</li><li>'[1300K] 고슴도치 세탁볼 3개 세트 엔에이치엔위투 주식회사'</li></ul> |
|
71 |
+
| 4.0 | <ul><li>'키친아트 빨래 삶는 통 냄비 인덕션 빨래솥 삶숙이 32cm 3.키친아트 34cm(일반) 척척홀릭'</li><li>'삶순이 행주삶기 행주 냄비 스테인리스 삶기 22cm 빠른대행'</li><li>'키친아트 스팀빨래솥30CM ZW1E3205 윤지상회'</li></ul> |
|
72 |
+
| 0.0 | <ul><li>'일상드로우 다리미판 스팀다리미 스탠드 접이식 스팀다리미판 스탠드 다다마스'</li><li>'휴대용 핸드 스팀 다리미판 패드 장갑 핸드다리미판장갑 주식회사 아이니쥬'</li><li>'가담다 접이식 스팀 좌식 플립 다리미판 (스톤그레이/프리미엄블랙)/높이조절7단 다리미판 모음전 우마형 화이트 가담다공식스토어'</li></ul> |
|
73 |
+
| 7.0 | <ul><li>'캠핑용 빨래줄 여행용 빨랫줄 품 휴대용 용품 야외 건조 동그라미'</li><li>'스테인레스 빨래줄 이불 걸이대 스텐 빨랫줄 와이어 304 빨랫줄(10m) 버클세트 스마일_'</li><li>'빨래집게걸이 12P 빨레 집개 건조대 찝개 형 빨래 집게 연두 골드코스트'</li></ul> |
|
74 |
+
| 11.0 | <ul><li>'[판매순위1등] 삼성에어드레서 5벌 DF-FL 호환필터 팡스토리'</li><li>'부드러운 카카오프렌즈 기획전 차박 무릎 학생 잇템 캠핑 춘식이 사무실 담요 청춘유통'</li><li>'암앤해머 베이킹 소다 6.12kg x 2 세척 탈취 백두마켓'</li></ul> |
|
75 |
+
| 3.0 | <ul><li>'벽걸이 메쉬 빨래 바구니 벽걸이 메쉬빨래바구니(핑크) 위드주'</li><li>'친환경 플라스틱 라탄 대용량 특대형 빨래바구니 60L 2. 베이지 '</li><li>'빨래통 3단 트롤리 4단 이동식 스윙빨래바구니 세탁함 빨래바구니3단 사구있오'</li></ul> |
|
76 |
+
| 2.0 | <ul><li>'리빙나이스 천장건조대 스텐봉 200cm 소경환'</li><li>'삼덕기업 하드웰 PVC코팅봉 스텐봉 베란다 천장빨래건조대 스텐봉 표준형 까바짬'</li><li>'전동빨래건조대 발코니 베란다 천장형 조명 C 꾸대'</li></ul> |
|
77 |
+
|
78 |
+
## Evaluation
|
79 |
+
|
80 |
+
### Metrics
|
81 |
+
| Label | Metric |
|
82 |
+
|:--------|:-------|
|
83 |
+
| **all** | 0.9601 |
|
84 |
+
|
85 |
+
## Uses
|
86 |
+
|
87 |
+
### Direct Use for Inference
|
88 |
+
|
89 |
+
First install the SetFit library:
|
90 |
+
|
91 |
+
```bash
|
92 |
+
pip install setfit
|
93 |
+
```
|
94 |
+
|
95 |
+
Then you can load this model and run inference.
|
96 |
+
|
97 |
+
```python
|
98 |
+
from setfit import SetFitModel
|
99 |
+
|
100 |
+
# Download from the 🤗 Hub
|
101 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_lh13")
|
102 |
+
# Run inference
|
103 |
+
preds = model("빨래방망이 다듬이방망이 2P세트 이불방 다듬잇방망이 신규A")
|
104 |
+
```
|
105 |
+
|
106 |
+
<!--
|
107 |
+
### Downstream Use
|
108 |
+
|
109 |
+
*List how someone could finetune this model on their own dataset.*
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
### Out-of-Scope Use
|
114 |
+
|
115 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
116 |
+
-->
|
117 |
+
|
118 |
+
<!--
|
119 |
+
## Bias, Risks and Limitations
|
120 |
+
|
121 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
122 |
+
-->
|
123 |
+
|
124 |
+
<!--
|
125 |
+
### Recommendations
|
126 |
+
|
127 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
128 |
+
-->
|
129 |
+
|
130 |
+
## Training Details
|
131 |
+
|
132 |
+
### Training Set Metrics
|
133 |
+
| Training set | Min | Median | Max |
|
134 |
+
|:-------------|:----|:-------|:----|
|
135 |
+
| Word count | 3 | 9.8017 | 20 |
|
136 |
+
|
137 |
+
| Label | Training Sample Count |
|
138 |
+
|:------|:----------------------|
|
139 |
+
| 0.0 | 50 |
|
140 |
+
| 1.0 | 50 |
|
141 |
+
| 2.0 | 50 |
|
142 |
+
| 3.0 | 50 |
|
143 |
+
| 4.0 | 50 |
|
144 |
+
| 5.0 | 50 |
|
145 |
+
| 6.0 | 50 |
|
146 |
+
| 7.0 | 50 |
|
147 |
+
| 8.0 | 50 |
|
148 |
+
| 9.0 | 50 |
|
149 |
+
| 10.0 | 50 |
|
150 |
+
| 11.0 | 50 |
|
151 |
+
|
152 |
+
### Training Hyperparameters
|
153 |
+
- batch_size: (512, 512)
|
154 |
+
- num_epochs: (20, 20)
|
155 |
+
- max_steps: -1
|
156 |
+
- sampling_strategy: oversampling
|
157 |
+
- num_iterations: 40
|
158 |
+
- body_learning_rate: (2e-05, 2e-05)
|
159 |
+
- head_learning_rate: 2e-05
|
160 |
+
- loss: CosineSimilarityLoss
|
161 |
+
- distance_metric: cosine_distance
|
162 |
+
- margin: 0.25
|
163 |
+
- end_to_end: False
|
164 |
+
- use_amp: False
|
165 |
+
- warmup_proportion: 0.1
|
166 |
+
- seed: 42
|
167 |
+
- eval_max_steps: -1
|
168 |
+
- load_best_model_at_end: False
|
169 |
+
|
170 |
+
### Training Results
|
171 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
172 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
173 |
+
| 0.0106 | 1 | 0.4631 | - |
|
174 |
+
| 0.5319 | 50 | 0.4236 | - |
|
175 |
+
| 1.0638 | 100 | 0.2102 | - |
|
176 |
+
| 1.5957 | 150 | 0.114 | - |
|
177 |
+
| 2.1277 | 200 | 0.0733 | - |
|
178 |
+
| 2.6596 | 250 | 0.0541 | - |
|
179 |
+
| 3.1915 | 300 | 0.0316 | - |
|
180 |
+
| 3.7234 | 350 | 0.0104 | - |
|
181 |
+
| 4.2553 | 400 | 0.0098 | - |
|
182 |
+
| 4.7872 | 450 | 0.0039 | - |
|
183 |
+
| 5.3191 | 500 | 0.0026 | - |
|
184 |
+
| 5.8511 | 550 | 0.0002 | - |
|
185 |
+
| 6.3830 | 600 | 0.0002 | - |
|
186 |
+
| 6.9149 | 650 | 0.0001 | - |
|
187 |
+
| 7.4468 | 700 | 0.0001 | - |
|
188 |
+
| 7.9787 | 750 | 0.0001 | - |
|
189 |
+
| 8.5106 | 800 | 0.0001 | - |
|
190 |
+
| 9.0426 | 850 | 0.0001 | - |
|
191 |
+
| 9.5745 | 900 | 0.0001 | - |
|
192 |
+
| 10.1064 | 950 | 0.0001 | - |
|
193 |
+
| 10.6383 | 1000 | 0.0001 | - |
|
194 |
+
| 11.1702 | 1050 | 0.0001 | - |
|
195 |
+
| 11.7021 | 1100 | 0.0001 | - |
|
196 |
+
| 12.2340 | 1150 | 0.0001 | - |
|
197 |
+
| 12.7660 | 1200 | 0.0 | - |
|
198 |
+
| 13.2979 | 1250 | 0.0001 | - |
|
199 |
+
| 13.8298 | 1300 | 0.0001 | - |
|
200 |
+
| 14.3617 | 1350 | 0.0 | - |
|
201 |
+
| 14.8936 | 1400 | 0.0001 | - |
|
202 |
+
| 15.4255 | 1450 | 0.0 | - |
|
203 |
+
| 15.9574 | 1500 | 0.0001 | - |
|
204 |
+
| 16.4894 | 1550 | 0.0 | - |
|
205 |
+
| 17.0213 | 1600 | 0.0 | - |
|
206 |
+
| 17.5532 | 1650 | 0.0 | - |
|
207 |
+
| 18.0851 | 1700 | 0.0 | - |
|
208 |
+
| 18.6170 | 1750 | 0.0 | - |
|
209 |
+
| 19.1489 | 1800 | 0.0 | - |
|
210 |
+
| 19.6809 | 1850 | 0.0 | - |
|
211 |
+
|
212 |
+
### Framework Versions
|
213 |
+
- Python: 3.10.12
|
214 |
+
- SetFit: 1.1.0.dev0
|
215 |
+
- Sentence Transformers: 3.1.1
|
216 |
+
- Transformers: 4.46.1
|
217 |
+
- PyTorch: 2.4.0+cu121
|
218 |
+
- Datasets: 2.20.0
|
219 |
+
- Tokenizers: 0.20.0
|
220 |
+
|
221 |
+
## Citation
|
222 |
+
|
223 |
+
### BibTeX
|
224 |
+
```bibtex
|
225 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
226 |
+
doi = {10.48550/ARXIV.2209.11055},
|
227 |
+
url = {https://arxiv.org/abs/2209.11055},
|
228 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
229 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
230 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
231 |
+
publisher = {arXiv},
|
232 |
+
year = {2022},
|
233 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
234 |
+
}
|
235 |
+
```
|
236 |
+
|
237 |
+
<!--
|
238 |
+
## Glossary
|
239 |
+
|
240 |
+
*Clearly define terms in order to be accessible across audiences.*
|
241 |
+
-->
|
242 |
+
|
243 |
+
<!--
|
244 |
+
## Model Card Authors
|
245 |
+
|
246 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
247 |
+
-->
|
248 |
+
|
249 |
+
<!--
|
250 |
+
## Model Card Contact
|
251 |
+
|
252 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
253 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_lh",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f4161708a9c42e493a78512fd7d41db61dc908844ad075aaebbd8ac477a63e2
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed312449dd52252bcd237d9727e26aa3452c71a75534eb6a979a720767241f73
|
3 |
+
size 74727
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|