File size: 15,437 Bytes
3346412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 테팔 매직핸즈 인덕션 블랙스톤 후라이팬 2종(24+28) 05-매트그레이3종(팬24+웍22+손잡이) (주)티피상사
- text: 놋담 방짜유기 유기 티스푼 10.유기 체리 사각 티스푼 (주)죽전도예
- text: 위케어 친환경 산화생분해 크린위생장갑 200 천연일회용 비닐장갑  에이비컴퍼니
- text: 대형 주방 베이킹 반죽 도마 실리콘 향균 80x70 눈금자 09. 모란그린 플러스 도톰 50x70 사은품 경식시대
- text: 오리스타 우드 하비 41 우드 큐브1호1구 세트 주식회사 두현인터내셔널
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.5785953728183967
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 16 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                             |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0   | <ul><li>'1 + 1 국산 실리콘 에어프라이어용기 전자렌지용기 6.십자형 1+1 그레이(특대) 리빙스토리'</li><li>'키친아트 프리미엄 아티스트3종 세트 (18양수+16편수+24전골) 프리미엄 아티스트3종세트 라임안경'</li><li>'PN풍년 압력밥솥 AS 부품 고무패킹 PC-20C A. 고무패킹_A-VTG-01. 베르투 VTGPC-01 비슈마켓'</li></ul> |
| 15.0  | <ul><li>'HC 빗살 점보그릴양면팬 30cm  주식회사 나르샤'</li><li>'[갤러리아] 엑스클립스 바닥3중 실속 2종세트 (F28+W28)  한화갤러리아(주)'</li><li>'[도착보장] 컴플리트 티타늄 IH 계란말이 3종 세트  주식회사 에이치씨컴퍼니 (HC Company)'</li></ul>                                         |
| 11.0  | <ul><li>'(이엔메디)스탠딩파우치 100장 한약파우치 한약봉지 봉투 한약팩 자연의선물 100장 이엔메디칼'</li><li>'(시시호시) 타원 가죽트레이 라지사이즈 Free_아쿠아민트 '</li><li>'셀룰로오스 행주 독일 스웨덴 주방행주 붉은튤립 21.공룡시대 티디인터내셔널'</li></ul>                                             |
| 8.0   | <ul><li>'1200x800 엔틱 1도 직교자상  브라우니박스12'</li><li>'MLL614 순동 향도세트 훈향로 향로 가루향 S 비디마켓(bd Market)'</li><li>'방짜 수공예품제기 제사제기제기 IW5E8362  코리아샵'</li></ul>                                                                    |
| 3.0   | <ul><li>'무공해 옹기명가 쌀독 긴항아리 소금단지 10kg 20kg 20kg 쌀독 옹기명가'</li><li>'농업용 저장 물탱크 사각 100L 대용량 농약 물통 탱크 말통 식수용 플라스틱 Q.60L3 꾸미다홈'</li><li>'액체 질소 탱크 10L 20L 30L 냉동 실험실 병원 보관 10리터 125mm 구경 구매가이드'</li></ul>                   |
| 5.0   | <ul><li>'vo/(그레이 2P)삶아쓰는 실리콘 와인마개 공기차단 다용도 병뚜껑 간편한  벤타상사'</li><li>'[OF511PN6]디아이 미니 디켄더 클리어 ONECOLOR/FREE sellerhub'</li><li>'쿠킹의정석 에그 수란만들기1개(랜덤)  메종드라라'</li></ul>                                                 |
| 7.0   | <ul><li>'선인장 화분 계량 스푼 숟가락 홀더 4색수저물결무늬화분크라프트지포장+가방 컴어라운드마켓'</li><li>'총알배송 크놉다이얼 햅 타이머 스탑워치 요가 요리 쿠킹 조리 선물용 가정용 업소용 대량주문 표준형 타이머 올어바웃헬스'</li><li>'[제이큐]한신 호스밴드-스테인레스 17Inch 430mm BOX20EA  월드와이드 쇼핑'</li></ul>         |
| 13.0  | <ul><li>'[로얄포드] 시그니처 칼블럭 세트 5PCS  (주)씨제이이엔엠'</li><li>'자석 칼걸이 소품걸이 거치대 행거 정리 50CM 수납선반 무타공 용품 프레임 50cm 알리몽드'</li><li>'양은 절구 210mm 318mm 업소용절구 절구방 업소용 특대260 주방119'</li></ul>                                          |
| 4.0   | <ul><li>'도자기 종지 ver.1 간장 일본 초장 와사비 미니 소스 그릇 omg 109 선택 I_8) 루미-69 줄고양이 종지 주식회사 오메가키친'</li><li>'옳음 공기 (4color) 블랙 오픈주방'</li><li>'에디슨 성인용 교정 젓가락 왼손용 오른손용 에디슨 성인용 교정 젓가락 오른손용 주식회사 성현종합유통'</li></ul>                   |
| 12.0  | <ul><li>'타이거보온주전자 핸디저그 1600ml / PWO-A160 화이트 신세계몰'</li><li>'코카코 물주전자 5L  쭈비쭈비'</li><li>'주전자 1.5L 들통주전자 스텐  위드위너(e)'</li></ul>                                                                                        |
| 9.0   | <ul><li>'고운손 자동 세척기 쌀  예스딜'</li><li>'800도씨 스텐 뒤집개 스패치 스크래퍼 그리들 터너 우드 손잡이 스텐 뒤집개 주식회사 디자인앤라이프스토리'</li><li>'수동 스테인레스 압착기 프레스 착즙기 2L 스테인리스 스틸 대경'</li></ul>                                                             |
| 14.0  | <ul><li>'V60종이필터 01/02/03화이트 40매 2-6인용(VCF-03-40W) 하리오코리아주식회사'</li><li>'스타 플루티드 저그 900ml_2503442/로얄코펜하겐  롯데쇼핑(주)'</li><li>'칼리타 102필터 40p-화이트  주식회사 로프트샵'</li></ul>                                                   |
| 0.0   | <ul><li>'접이식 테이블 정사각 소(송목) G.TOP'</li><li>'책상 좌식 블루 스탠다드 4 접이식 D 공부 밥상 1인용 테이블 간이 미니  (SYSH)컴퍼니'</li><li>'접이식 거실 공부 테이블 미니 좌탁 접이식공부상 상품선택_테이블 라운드 포커스스토어'</li></ul>                                                  |
| 6.0   | <ul><li>'와인잔 큐빅 칵테일잔 투명 보석 내열유리 홈파티 선물 9)  물컵 1개(선물 상자 없음) 김헌수'</li><li>'테이크아웃컵 100개/아이스컵 투명일회용 플라스틱컵 일자투명빨대(7x210x500개)1개 바른유통'</li><li>'컨템포러리머그 HM형 0.36L 4p(BG) HME형 '</li></ul>                                  |
| 10.0  | <ul><li>'상하로 움직이는 S T smart 창문형 주방 정리 식기 건조대 900 1200 선택01) 900 T-스마트[티타늄 컬러] 퀸넥스'</li><li>'이케아 RINNIG 린니그 패턴 행주 4개입 다크그레이 2) 이나마리아 행주 4P (블루/핑크) 주식회사 랩앤툴스'</li><li>'JBJ 코모드 2단 올스텐 식기건조대  주식회사 제이비제이'</li></ul>    |
| 2.0   | <ul><li>'KNC 모도리 깔끔도마 리필교체형 2p 번트오렌지_크림화이트 그로쓰스토어'</li><li>'스텐 업소용 대형 도마 주방 살균 위생 베이킹 반죽판 큰 특대 업소 가정용 싱크대 상판 양면접힘_1.5_50x70 와이엘컴퍼니'</li><li>'[죠셉죠셉]폴리오도마라지그라파이트4종세트 / JJP60184 도마세트 (주)신세계사이먼 파주점'</li></ul>         |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.5786 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh25")
# Run inference
preds = model("놋담 방짜유기 유기 티스푼 10.유기 체리 사각 티스푼 (주)죽전도예")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.5687 | 22  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 50                    |
| 6.0   | 50                    |
| 7.0   | 50                    |
| 8.0   | 50                    |
| 9.0   | 50                    |
| 10.0  | 50                    |
| 11.0  | 50                    |
| 12.0  | 50                    |
| 13.0  | 50                    |
| 14.0  | 50                    |
| 15.0  | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-----:|:----:|:-------------:|:---------------:|
| 0.008 | 1    | 0.4166        | -               |
| 0.4   | 50   | 0.3979        | -               |
| 0.8   | 100  | 0.2722        | -               |
| 1.2   | 150  | 0.1862        | -               |
| 1.6   | 200  | 0.1144        | -               |
| 2.0   | 250  | 0.0921        | -               |
| 2.4   | 300  | 0.0586        | -               |
| 2.8   | 350  | 0.0429        | -               |
| 3.2   | 400  | 0.0189        | -               |
| 3.6   | 450  | 0.0096        | -               |
| 4.0   | 500  | 0.0151        | -               |
| 4.4   | 550  | 0.0146        | -               |
| 4.8   | 600  | 0.0154        | -               |
| 5.2   | 650  | 0.012         | -               |
| 5.6   | 700  | 0.0145        | -               |
| 6.0   | 750  | 0.0037        | -               |
| 6.4   | 800  | 0.0064        | -               |
| 6.8   | 850  | 0.001         | -               |
| 7.2   | 900  | 0.0007        | -               |
| 7.6   | 950  | 0.0004        | -               |
| 8.0   | 1000 | 0.0002        | -               |
| 8.4   | 1050 | 0.0002        | -               |
| 8.8   | 1100 | 0.0002        | -               |
| 9.2   | 1150 | 0.0002        | -               |
| 9.6   | 1200 | 0.0002        | -               |
| 10.0  | 1250 | 0.0002        | -               |
| 10.4  | 1300 | 0.0001        | -               |
| 10.8  | 1350 | 0.0001        | -               |
| 11.2  | 1400 | 0.0001        | -               |
| 11.6  | 1450 | 0.0001        | -               |
| 12.0  | 1500 | 0.0001        | -               |
| 12.4  | 1550 | 0.0001        | -               |
| 12.8  | 1600 | 0.0001        | -               |
| 13.2  | 1650 | 0.0001        | -               |
| 13.6  | 1700 | 0.0001        | -               |
| 14.0  | 1750 | 0.0001        | -               |
| 14.4  | 1800 | 0.0001        | -               |
| 14.8  | 1850 | 0.0001        | -               |
| 15.2  | 1900 | 0.0001        | -               |
| 15.6  | 1950 | 0.0001        | -               |
| 16.0  | 2000 | 0.0001        | -               |
| 16.4  | 2050 | 0.0001        | -               |
| 16.8  | 2100 | 0.0001        | -               |
| 17.2  | 2150 | 0.0001        | -               |
| 17.6  | 2200 | 0.0001        | -               |
| 18.0  | 2250 | 0.0001        | -               |
| 18.4  | 2300 | 0.0001        | -               |
| 18.8  | 2350 | 0.0001        | -               |
| 19.2  | 2400 | 0.0001        | -               |
| 19.6  | 2450 | 0.0001        | -               |
| 20.0  | 2500 | 0.0001        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->