---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: SD 바이오 에스디 코드프리 당뇨검사지 4박스 200매 (유효기간 2025년 03월) 코드프리 200매+알콜솜 100매 엠에스메디칼
- text: 아큐첵 소프트클릭스 채혈기+채혈침 25개 액티브 퍼포마 인스턴트 가이드 란셋 채혈바늘 주식회사 더에스지엠
- text: 녹십자 혈당시험지 당뇨 시험지 그린닥터 50매 시험지100매+체혈침100개 자재스토어
- text: HL 지닥터 혈당시험지 100매 /당뇨측정 검사지 스트립 1_지닥터 혈당시험지 100매+알콜솜100매 헬스라e프
- text: 비디 울트라파인 인슐린 주사기 1박스 100개 328821[31G 8mm 0.5ml]BD 펜니들 주사바늘 울트라파인2 BD 인슐린 31G
6mm 0.5ml 1박스(324901) 더메디칼샵
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9786747905559787
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 |
- '프리스타일 리브레 무채혈 연속혈당측정기(24년1월)얼라이브패치1매 거래명세서 광명헬스케어'
- 'SD 코드프리 혈당측정기(측정기+채혈기+침10매+파우치)P 스토어알파'
- '올메디쿠스 글루코닥터 탑 혈당계 AGM-4100+파우치+채혈기+채혈침 10개 엠에스메디칼'
|
| 2.0 | - '에스디 SD 코드프리 측정지|검사지|시험지 100매(25년 2월) 더메디칼샵'
- '바로잰 당뇨검사 혈당시험지 100매(50매x2팩) 사용기한 25년 3월 MinSellAmount 유니프라이스'
- '옵티엄 프리스타일 케톤시험지1박스10매 검사지 혈중 (24년 8월) 메디트리'
|
| 0.0 | - '비디 울트라파인 인슐린 주사기 1박스 100입 324901 [31G 6mm 0.5ml] BD 펜니들 주사바늘 울트라파인2 BD 인슐린 31G 8mm 3/10ml(0.5단위) 1박스(320440) 더메디칼샵'
- 'BD 비디 울트라파인 인슐린 주사기 시린지 31G 6mm 1ml 324903 100입 주식회사 더에스지엠'
- '정림 멸균 일회용 주사기 3cc 23g 25mm 100개입 멸균주사기 10cc 18G 38mm(100ea/pck) (주)케이디상사'
|
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9787 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh7")
# Run inference
preds = model("녹십자 혈당시험지 당뇨 시험지 그린닥터 50매 시험지100매+체혈침100개 자재스토어")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 9.62 | 21 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0417 | 1 | 0.4565 | - |
| 2.0833 | 50 | 0.1836 | - |
| 4.1667 | 100 | 0.1645 | - |
| 6.25 | 150 | 0.0004 | - |
| 8.3333 | 200 | 0.0001 | - |
| 10.4167 | 250 | 0.0001 | - |
| 12.5 | 300 | 0.0 | - |
| 14.5833 | 350 | 0.0 | - |
| 16.6667 | 400 | 0.0 | - |
| 18.75 | 450 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```