mini1013 commited on
Commit
3cc0173
·
verified ·
1 Parent(s): 5c1a699

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: '[설화수][6월]순행클렌징오일 200ml (#M)11st>클렌징/필링>클렌징오일>클렌징오일 11st > 뷰티 > 클렌징/필링 >
14
+ 클렌징오일 > 클렌징오일'
15
+ - text: '[토니모리] 플로리아 브라이트닝 필링젤 (#M)GSSHOP>뷰티>클렌징>스크럽/필링 GSSHOP > 뷰티 > 클렌징 > 스크럽/필링'
16
+ - text: 클린앤클리어 에센셜 포밍클렌져 150mL MinSellAmount (#M)스마일프레시 홈>바디/헤어>바디케어>바디클렌저 Gmarket
17
+ > 뷰티 > 바디/헤어 > 바디케어 > 바디클렌저
18
+ - text: 프레쉬 슈가 페이스 폴리쉬 125g 스크럽 125g × 1개 쿠팡 홈>생활용품>헤어/바디/세안>클렌징/필링>필링>파우더/스크럽;(#M)쿠팡
19
+ 홈>뷰티>클렌징/필링>스크럽/필링>파우더/스크럽 Coupang > 뷰티 > 클렌징/필링 > 스크럽/필링 > 파우더/스크럽
20
+ - text: 센카 퍼펙트 휩 콜라겐 인 클렌징 폼 120g × 100개 (#M)쿠팡 홈>싱글라이프>샤워/세안>클렌징>폼/젤/비누 Coupang >
21
+ 뷰티 > 클렌징/필링 > 클렌징 폼
22
+ inference: true
23
+ model-index:
24
+ - name: SetFit with klue/roberta-base
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.938438730374763
36
+ name: Accuracy
37
+ ---
38
+
39
+ # SetFit with klue/roberta-base
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 7 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | 6 | <ul><li>'클렌징 버블 마유 말 폼 더블워시 세안제 마유더블워시폼 1개_케어나이트크림 1개 (#M)위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저 위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저'</li><li>'시카 클렌징 폼 아하 세안제 클렌져 병풀 시카프라임폼 2개_마유율무스킨500 1개 (#M)위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저 위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저'</li><li>'시카 클렌징 폼 세안제 클렌져 아침 바하. WB2838D 시카프라임폼 2개_쿨바디워시(파랑) 2개 (#M)위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저 위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저'</li></ul> |
70
+ | 2 | <ul><li>'뉴트로지나 딥클린 클렌징 오일 200ml (#M)위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저 위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저'</li><li>'설화수 순행클렌징 오일200ml GM MinSellAmount 화장품/향수>클렌징/필링>클렌징오일/워터;(#M)화장품/향수>클렌징/필링>클렌징오일 Gmarket > 뷰티 > 화장품/향수 > 클렌징/필링 > 클렌징오일'</li><li>'온더바디 라이스 화장 리무버 피지제거 클렌징오일 클렌징오일200ml (#M)위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저 위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저'</li></ul> |
71
+ | 5 | <ul><li>'[토니모리] 99 제비집 아이크림/그린티 클렌징티슈 1+1 9,900원 + 11번가 단독 92_프로클린 클렌징 티슈_200매 세트 11st>선케어>선크림/선블록>선크림/선블록;쇼킹딜 홈>뷰티>선케어/메이크업>선블록;쇼킹딜 홈>뷰티>스킨케어>스킨/로션;쇼킹딜 홈>뷰티>선케어/메이크업>립/치크메이크업;11st>뷰티>선케어/메이크업>립/치크메이크업;11st>메이크업>립메이크업>립틴트;11st > 뷰티 > 선케어 > 선크림/선블록 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 립/치크메이크업'</li><li>'아임프롬 페어 수딩 패드 기획 (휴대용 패드 케이스 증정) [단독기획] 아임프롬 페어 수딩 패드(휴대용 패드 케이스 증정) (#M)홈>마스크팩>시트팩/패드>패드 OLIVEYOUNG > 마스크팩 > 시트팩/패드 > 패드'</li><li>'코스알엑스 원스텝 오리지널 클리어 패드 70매_토너패드,각질패드 원스텝 오리지널 클리어 패드 홈>뷰티 DAY;홈>패드 만원&시카세럼 1+1;홈>뷰티 위-크;홈>❣️9.24 오후7시~ 1+1(24시간)❣️;홈>❣️1+1❣️패드,풀핏,시카라인;홈>💗패드1+1💗 ~11.3 오후6시;홈>라이브 제품 전체보기;홈>LIVE 특가 🔥;홈>✨네이버 쇼핑 페스타🎪>⏰9,900원 뷰티데이 단 하루 특가;홈>✨네이버 쇼핑 페스타🎪>👍패드의 원조! UP TO 40% OFF!;홈>🎃해피 할로윈 깜짝 선물🎁;홈>원스텝 패드;홈>브랜드위크 SALE;홈>윈터세일 UP TO 50%;홈>패드;(#M)홈>라인별>원스텝 패드 Naverstore > 화장품/미용 > 클렌징 > 스크럽/필링'</li></ul> |
72
+ | 0 | <ul><li>'아리따움 뽀오얀 미소 발효 립앤아이 리무버 250ml MinSellAmount (#M)화장품/향수>클렌징/필링>립앤아이리무버 Gmarket > 뷰티 > 화장품/향수 > 클렌징/필링 > 립앤아이리무버'</li><li>'비파실 립 앤 아이 리무버 125ml LotteOn > 뷰티 > 클렌징 > 클렌징오일 LotteOn > 뷰티 > 럭셔리 스킨케어 > 클렌징 > 립아이리무버'</li><li>'아리따움 뽀오얀 미소 발효 립앤아이 리무버 250ml 위메프 > 뷰티 > 스킨케어 > 로션/에멀젼;위메프 > 뷰티 > 클렌징/필링 > 클렌징;(#M)위메프 > 뷰티 > 클렌징/필링 > 클렌징 > 클렌징오일 위메프 > 뷰티 > 스킨케어 > 로션/에멀젼'</li></ul> |
73
+ | 4 | <ul><li>'맛사지클림 에코에니어 퓨어 아르간 리얼 클렌징 크림 300ml -O (#M)위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저 위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저'</li><li>'이노벨라 클렌징 메이크업제거 크림 발아현미 300ml (#M)위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저 위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저'</li><li>'이컬 알로에 클렌징 메이크업제거 크림 300ml (#M)위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저 위메프 > 뷰티 > 이미용소품/기기 > 클렌징소품 > 브러쉬/진동클렌저'</li></ul> |
74
+ | 1 | <ul><li>'셀리맥스 지우개 패드 60매 / 화해 어워드 1위 지우개패드 1개 홈>썸머위크🔥Big Sale;홈>[만원의 행복];홈>[50%]셀리맥스 브랜드위크;홈>만원의 행복 [패드];홈>셀리맥스 Best아이템;홈>[50%] 슈퍼위크;홈>[50%] 셀리맥스 베스트템;홈>[50%] 봄맞이 빅세일;홈>네이버 단독 특가;홈>네이버 특가;홈>1만원 패드 모음;홈>[기간한정] 6월 썸머위크;홈>패드1만원;홈>[패드] 만원의 행복;홈>[1만원] 패드;홈>패드;홈>1만원 패드;홈>[1위] 패드;홈>[화해 1위] 패드;(#M)홈>네이버Best Naverstore > 화장품/미용 > 클렌징 > 스크럽/필링'</li><li>'아이오페 프로 필링 소프트 젤 (#M)SSG.COM/남성화장품/클렌징/쉐이빙 ssg > 뷰티 > 남성화장품 > 클렌징/쉐이빙'</li><li>'프리메라 페이셜 마일드 필링젤 150ml 얼굴각질제거제 저자극 때 제거 박피 페이스스크럽 페이셜 마일드 필링 250ml (대용량) (#M)홈>화장품/미용>클렌징>스크럽/필링 Naverstore > 화장품/미용 > 클렌징 > 스크럽/필링'</li></ul> |
75
+ | 3 | <ul><li>'헤라 리프레싱 토닉 클렌징워터 200ML (#M)홈>화장품/미용>클렌징>클렌징워터 Naverstore > 화장품/미용 > 클렌징 > 클렌징워터'</li><li>'눅스 오 데마끼앙 미셀레르 미셀라 클렌징 워터 200ml (#M)11st>클렌징/필링>클렌징워터>클렌징워터 11st > 뷰티 > 클렌징/필링 > 클렌징워터'</li><li>'[82%+10%+T11%]토니모리 빅세일 UP TO 82%+그린티 클렌징워터 55_더 촉촉 그린티 노워시 클렌징 워터_500ml 쇼킹딜 홈>뷰티>스킨케어>스킨/로션;쇼킹딜 홈>뷰티>선케어/메이크업>립/치크메이크업;11st>메이크업>립메이크업>립틴트;11st>뷰티>선케어/메이크업>립/치크메이크업;11st>스킨케어>스킨케어 세트>스킨케어 세트;11st>뷰티>스킨케어>스킨/로션;11st > 뷰티 > 스킨케어 > 스킨케어 세트 11st Hour Event > 패션/뷰티 > 뷰티 > 스킨케어 > 스킨/로션'</li></ul> |
76
+
77
+ ## Evaluation
78
+
79
+ ### Metrics
80
+ | Label | Accuracy |
81
+ |:--------|:---------|
82
+ | **all** | 0.9384 |
83
+
84
+ ## Uses
85
+
86
+ ### Direct Use for Inference
87
+
88
+ First install the SetFit library:
89
+
90
+ ```bash
91
+ pip install setfit
92
+ ```
93
+
94
+ Then you can load this model and run inference.
95
+
96
+ ```python
97
+ from setfit import SetFitModel
98
+
99
+ # Download from the 🤗 Hub
100
+ model = SetFitModel.from_pretrained("mini1013/master_item_top_bt10")
101
+ # Run inference
102
+ preds = model("[토니모리] 플로리아 브라이트닝 필링젤 (#M)GSSHOP>뷰티>클렌징>스크럽/필링 GSSHOP > 뷰티 > 클렌징 > 스크럽/필링")
103
+ ```
104
+
105
+ <!--
106
+ ### Downstream Use
107
+
108
+ *List how someone could finetune this model on their own dataset.*
109
+ -->
110
+
111
+ <!--
112
+ ### Out-of-Scope Use
113
+
114
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
115
+ -->
116
+
117
+ <!--
118
+ ## Bias, Risks and Limitations
119
+
120
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
121
+ -->
122
+
123
+ <!--
124
+ ### Recommendations
125
+
126
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
127
+ -->
128
+
129
+ ## Training Details
130
+
131
+ ### Training Set Metrics
132
+ | Training set | Min | Median | Max |
133
+ |:-------------|:----|:--------|:----|
134
+ | Word count | 13 | 24.4171 | 93 |
135
+
136
+ | Label | Training Sample Count |
137
+ |:------|:----------------------|
138
+ | 0 | 50 |
139
+ | 1 | 50 |
140
+ | 2 | 50 |
141
+ | 3 | 50 |
142
+ | 4 | 50 |
143
+ | 5 | 50 |
144
+ | 6 | 50 |
145
+
146
+ ### Training Hyperparameters
147
+ - batch_size: (64, 64)
148
+ - num_epochs: (30, 30)
149
+ - max_steps: -1
150
+ - sampling_strategy: oversampling
151
+ - num_iterations: 100
152
+ - body_learning_rate: (2e-05, 1e-05)
153
+ - head_learning_rate: 0.01
154
+ - loss: CosineSimilarityLoss
155
+ - distance_metric: cosine_distance
156
+ - margin: 0.25
157
+ - end_to_end: False
158
+ - use_amp: False
159
+ - warmup_proportion: 0.1
160
+ - l2_weight: 0.01
161
+ - seed: 42
162
+ - eval_max_steps: -1
163
+ - load_best_model_at_end: False
164
+
165
+ ### Training Results
166
+ | Epoch | Step | Training Loss | Validation Loss |
167
+ |:-------:|:-----:|:-------------:|:---------------:|
168
+ | 0.0018 | 1 | 0.4399 | - |
169
+ | 0.0914 | 50 | 0.3733 | - |
170
+ | 0.1828 | 100 | 0.3256 | - |
171
+ | 0.2742 | 150 | 0.3157 | - |
172
+ | 0.3656 | 200 | 0.3006 | - |
173
+ | 0.4570 | 250 | 0.2302 | - |
174
+ | 0.5484 | 300 | 0.1886 | - |
175
+ | 0.6399 | 350 | 0.1366 | - |
176
+ | 0.7313 | 400 | 0.1011 | - |
177
+ | 0.8227 | 450 | 0.0516 | - |
178
+ | 0.9141 | 500 | 0.0292 | - |
179
+ | 1.0055 | 550 | 0.0129 | - |
180
+ | 1.0969 | 600 | 0.0011 | - |
181
+ | 1.1883 | 650 | 0.0005 | - |
182
+ | 1.2797 | 700 | 0.0005 | - |
183
+ | 1.3711 | 750 | 0.0004 | - |
184
+ | 1.4625 | 800 | 0.0003 | - |
185
+ | 1.5539 | 850 | 0.0003 | - |
186
+ | 1.6453 | 900 | 0.0002 | - |
187
+ | 1.7367 | 950 | 0.0002 | - |
188
+ | 1.8282 | 1000 | 0.0001 | - |
189
+ | 1.9196 | 1050 | 0.0001 | - |
190
+ | 2.0110 | 1100 | 0.0001 | - |
191
+ | 2.1024 | 1150 | 0.0001 | - |
192
+ | 2.1938 | 1200 | 0.0001 | - |
193
+ | 2.2852 | 1250 | 0.0001 | - |
194
+ | 2.3766 | 1300 | 0.0001 | - |
195
+ | 2.4680 | 1350 | 0.0 | - |
196
+ | 2.5594 | 1400 | 0.0001 | - |
197
+ | 2.6508 | 1450 | 0.0 | - |
198
+ | 2.7422 | 1500 | 0.0 | - |
199
+ | 2.8336 | 1550 | 0.0 | - |
200
+ | 2.9250 | 1600 | 0.0 | - |
201
+ | 3.0165 | 1650 | 0.0 | - |
202
+ | 3.1079 | 1700 | 0.0 | - |
203
+ | 3.1993 | 1750 | 0.0 | - |
204
+ | 3.2907 | 1800 | 0.0 | - |
205
+ | 3.3821 | 1850 | 0.0 | - |
206
+ | 3.4735 | 1900 | 0.0 | - |
207
+ | 3.5649 | 1950 | 0.0 | - |
208
+ | 3.6563 | 2000 | 0.0 | - |
209
+ | 3.7477 | 2050 | 0.0 | - |
210
+ | 3.8391 | 2100 | 0.0 | - |
211
+ | 3.9305 | 2150 | 0.0 | - |
212
+ | 4.0219 | 2200 | 0.0 | - |
213
+ | 4.1133 | 2250 | 0.0 | - |
214
+ | 4.2048 | 2300 | 0.0 | - |
215
+ | 4.2962 | 2350 | 0.0 | - |
216
+ | 4.3876 | 2400 | 0.0 | - |
217
+ | 4.4790 | 2450 | 0.0 | - |
218
+ | 4.5704 | 2500 | 0.0 | - |
219
+ | 4.6618 | 2550 | 0.0 | - |
220
+ | 4.7532 | 2600 | 0.0 | - |
221
+ | 4.8446 | 2650 | 0.0 | - |
222
+ | 4.9360 | 2700 | 0.0 | - |
223
+ | 5.0274 | 2750 | 0.0 | - |
224
+ | 5.1188 | 2800 | 0.0 | - |
225
+ | 5.2102 | 2850 | 0.0 | - |
226
+ | 5.3016 | 2900 | 0.0 | - |
227
+ | 5.3931 | 2950 | 0.0 | - |
228
+ | 5.4845 | 3000 | 0.0 | - |
229
+ | 5.5759 | 3050 | 0.0 | - |
230
+ | 5.6673 | 3100 | 0.0 | - |
231
+ | 5.7587 | 3150 | 0.0 | - |
232
+ | 5.8501 | 3200 | 0.0 | - |
233
+ | 5.9415 | 3250 | 0.0 | - |
234
+ | 6.0329 | 3300 | 0.0 | - |
235
+ | 6.1243 | 3350 | 0.0 | - |
236
+ | 6.2157 | 3400 | 0.0 | - |
237
+ | 6.3071 | 3450 | 0.0 | - |
238
+ | 6.3985 | 3500 | 0.0 | - |
239
+ | 6.4899 | 3550 | 0.0 | - |
240
+ | 6.5814 | 3600 | 0.0 | - |
241
+ | 6.6728 | 3650 | 0.0 | - |
242
+ | 6.7642 | 3700 | 0.0 | - |
243
+ | 6.8556 | 3750 | 0.0 | - |
244
+ | 6.9470 | 3800 | 0.0 | - |
245
+ | 7.0384 | 3850 | 0.0 | - |
246
+ | 7.1298 | 3900 | 0.0 | - |
247
+ | 7.2212 | 3950 | 0.0 | - |
248
+ | 7.3126 | 4000 | 0.0 | - |
249
+ | 7.4040 | 4050 | 0.0051 | - |
250
+ | 7.4954 | 4100 | 0.0091 | - |
251
+ | 7.5868 | 4150 | 0.0032 | - |
252
+ | 7.6782 | 4200 | 0.0014 | - |
253
+ | 7.7697 | 4250 | 0.0 | - |
254
+ | 7.8611 | 4300 | 0.0 | - |
255
+ | 7.9525 | 4350 | 0.0 | - |
256
+ | 8.0439 | 4400 | 0.0 | - |
257
+ | 8.1353 | 4450 | 0.0 | - |
258
+ | 8.2267 | 4500 | 0.0 | - |
259
+ | 8.3181 | 4550 | 0.0 | - |
260
+ | 8.4095 | 4600 | 0.0 | - |
261
+ | 8.5009 | 4650 | 0.0 | - |
262
+ | 8.5923 | 4700 | 0.0 | - |
263
+ | 8.6837 | 4750 | 0.0 | - |
264
+ | 8.7751 | 4800 | 0.0 | - |
265
+ | 8.8665 | 4850 | 0.0 | - |
266
+ | 8.9580 | 4900 | 0.0 | - |
267
+ | 9.0494 | 4950 | 0.0 | - |
268
+ | 9.1408 | 5000 | 0.0 | - |
269
+ | 9.2322 | 5050 | 0.0 | - |
270
+ | 9.3236 | 5100 | 0.0 | - |
271
+ | 9.4150 | 5150 | 0.0 | - |
272
+ | 9.5064 | 5200 | 0.0 | - |
273
+ | 9.5978 | 5250 | 0.0 | - |
274
+ | 9.6892 | 5300 | 0.0 | - |
275
+ | 9.7806 | 5350 | 0.0 | - |
276
+ | 9.8720 | 5400 | 0.0 | - |
277
+ | 9.9634 | 5450 | 0.0 | - |
278
+ | 10.0548 | 5500 | 0.0 | - |
279
+ | 10.1463 | 5550 | 0.0 | - |
280
+ | 10.2377 | 5600 | 0.0 | - |
281
+ | 10.3291 | 5650 | 0.0 | - |
282
+ | 10.4205 | 5700 | 0.0 | - |
283
+ | 10.5119 | 5750 | 0.0 | - |
284
+ | 10.6033 | 5800 | 0.0 | - |
285
+ | 10.6947 | 5850 | 0.0 | - |
286
+ | 10.7861 | 5900 | 0.0 | - |
287
+ | 10.8775 | 5950 | 0.0 | - |
288
+ | 10.9689 | 6000 | 0.0 | - |
289
+ | 11.0603 | 6050 | 0.0 | - |
290
+ | 11.1517 | 6100 | 0.0 | - |
291
+ | 11.2431 | 6150 | 0.0 | - |
292
+ | 11.3346 | 6200 | 0.0 | - |
293
+ | 11.4260 | 6250 | 0.0 | - |
294
+ | 11.5174 | 6300 | 0.0 | - |
295
+ | 11.6088 | 6350 | 0.0 | - |
296
+ | 11.7002 | 6400 | 0.0 | - |
297
+ | 11.7916 | 6450 | 0.0 | - |
298
+ | 11.8830 | 6500 | 0.0 | - |
299
+ | 11.9744 | 6550 | 0.0 | - |
300
+ | 12.0658 | 6600 | 0.0 | - |
301
+ | 12.1572 | 6650 | 0.0 | - |
302
+ | 12.2486 | 6700 | 0.0 | - |
303
+ | 12.3400 | 6750 | 0.0 | - |
304
+ | 12.4314 | 6800 | 0.0 | - |
305
+ | 12.5229 | 6850 | 0.0 | - |
306
+ | 12.6143 | 6900 | 0.0 | - |
307
+ | 12.7057 | 6950 | 0.0 | - |
308
+ | 12.7971 | 7000 | 0.0 | - |
309
+ | 12.8885 | 7050 | 0.0 | - |
310
+ | 12.9799 | 7100 | 0.0 | - |
311
+ | 13.0713 | 7150 | 0.0 | - |
312
+ | 13.1627 | 7200 | 0.0 | - |
313
+ | 13.2541 | 7250 | 0.0 | - |
314
+ | 13.3455 | 7300 | 0.0 | - |
315
+ | 13.4369 | 7350 | 0.0 | - |
316
+ | 13.5283 | 7400 | 0.0 | - |
317
+ | 13.6197 | 7450 | 0.0 | - |
318
+ | 13.7112 | 7500 | 0.0 | - |
319
+ | 13.8026 | 7550 | 0.0 | - |
320
+ | 13.8940 | 7600 | 0.0 | - |
321
+ | 13.9854 | 7650 | 0.0 | - |
322
+ | 14.0768 | 7700 | 0.0 | - |
323
+ | 14.1682 | 7750 | 0.0 | - |
324
+ | 14.2596 | 7800 | 0.0 | - |
325
+ | 14.3510 | 7850 | 0.0 | - |
326
+ | 14.4424 | 7900 | 0.0 | - |
327
+ | 14.5338 | 7950 | 0.0 | - |
328
+ | 14.6252 | 8000 | 0.0 | - |
329
+ | 14.7166 | 8050 | 0.0 | - |
330
+ | 14.8080 | 8100 | 0.0 | - |
331
+ | 14.8995 | 8150 | 0.0 | - |
332
+ | 14.9909 | 8200 | 0.0 | - |
333
+ | 15.0823 | 8250 | 0.0 | - |
334
+ | 15.1737 | 8300 | 0.0 | - |
335
+ | 15.2651 | 8350 | 0.0 | - |
336
+ | 15.3565 | 8400 | 0.0 | - |
337
+ | 15.4479 | 8450 | 0.0 | - |
338
+ | 15.5393 | 8500 | 0.0 | - |
339
+ | 15.6307 | 8550 | 0.0 | - |
340
+ | 15.7221 | 8600 | 0.0 | - |
341
+ | 15.8135 | 8650 | 0.0 | - |
342
+ | 15.9049 | 8700 | 0.0 | - |
343
+ | 15.9963 | 8750 | 0.0 | - |
344
+ | 16.0878 | 8800 | 0.0 | - |
345
+ | 16.1792 | 8850 | 0.0 | - |
346
+ | 16.2706 | 8900 | 0.0 | - |
347
+ | 16.3620 | 8950 | 0.0 | - |
348
+ | 16.4534 | 9000 | 0.0 | - |
349
+ | 16.5448 | 9050 | 0.0 | - |
350
+ | 16.6362 | 9100 | 0.0 | - |
351
+ | 16.7276 | 9150 | 0.0 | - |
352
+ | 16.8190 | 9200 | 0.0 | - |
353
+ | 16.9104 | 9250 | 0.0 | - |
354
+ | 17.0018 | 9300 | 0.0 | - |
355
+ | 17.0932 | 9350 | 0.0 | - |
356
+ | 17.1846 | 9400 | 0.0 | - |
357
+ | 17.2761 | 9450 | 0.0 | - |
358
+ | 17.3675 | 9500 | 0.0 | - |
359
+ | 17.4589 | 9550 | 0.0 | - |
360
+ | 17.5503 | 9600 | 0.0 | - |
361
+ | 17.6417 | 9650 | 0.0 | - |
362
+ | 17.7331 | 9700 | 0.0 | - |
363
+ | 17.8245 | 9750 | 0.0 | - |
364
+ | 17.9159 | 9800 | 0.0 | - |
365
+ | 18.0073 | 9850 | 0.0 | - |
366
+ | 18.0987 | 9900 | 0.0 | - |
367
+ | 18.1901 | 9950 | 0.0 | - |
368
+ | 18.2815 | 10000 | 0.0 | - |
369
+ | 18.3729 | 10050 | 0.0 | - |
370
+ | 18.4644 | 10100 | 0.0 | - |
371
+ | 18.5558 | 10150 | 0.0 | - |
372
+ | 18.6472 | 10200 | 0.0 | - |
373
+ | 18.7386 | 10250 | 0.0 | - |
374
+ | 18.8300 | 10300 | 0.0 | - |
375
+ | 18.9214 | 10350 | 0.0 | - |
376
+ | 19.0128 | 10400 | 0.0 | - |
377
+ | 19.1042 | 10450 | 0.0 | - |
378
+ | 19.1956 | 10500 | 0.0 | - |
379
+ | 19.2870 | 10550 | 0.0 | - |
380
+ | 19.3784 | 10600 | 0.0 | - |
381
+ | 19.4698 | 10650 | 0.0 | - |
382
+ | 19.5612 | 10700 | 0.0 | - |
383
+ | 19.6527 | 10750 | 0.0 | - |
384
+ | 19.7441 | 10800 | 0.0 | - |
385
+ | 19.8355 | 10850 | 0.0 | - |
386
+ | 19.9269 | 10900 | 0.0 | - |
387
+ | 20.0183 | 10950 | 0.0 | - |
388
+ | 20.1097 | 11000 | 0.0 | - |
389
+ | 20.2011 | 11050 | 0.0 | - |
390
+ | 20.2925 | 11100 | 0.0 | - |
391
+ | 20.3839 | 11150 | 0.0 | - |
392
+ | 20.4753 | 11200 | 0.0 | - |
393
+ | 20.5667 | 11250 | 0.0 | - |
394
+ | 20.6581 | 11300 | 0.0 | - |
395
+ | 20.7495 | 11350 | 0.0 | - |
396
+ | 20.8410 | 11400 | 0.0 | - |
397
+ | 20.9324 | 11450 | 0.0 | - |
398
+ | 21.0238 | 11500 | 0.0 | - |
399
+ | 21.1152 | 11550 | 0.0 | - |
400
+ | 21.2066 | 11600 | 0.0 | - |
401
+ | 21.2980 | 11650 | 0.0 | - |
402
+ | 21.3894 | 11700 | 0.0001 | - |
403
+ | 21.4808 | 11750 | 0.0004 | - |
404
+ | 21.5722 | 11800 | 0.0 | - |
405
+ | 21.6636 | 11850 | 0.0 | - |
406
+ | 21.7550 | 11900 | 0.0 | - |
407
+ | 21.8464 | 11950 | 0.0002 | - |
408
+ | 21.9378 | 12000 | 0.0002 | - |
409
+ | 22.0293 | 12050 | 0.0 | - |
410
+ | 22.1207 | 12100 | 0.0 | - |
411
+ | 22.2121 | 12150 | 0.0 | - |
412
+ | 22.3035 | 12200 | 0.0 | - |
413
+ | 22.3949 | 12250 | 0.0 | - |
414
+ | 22.4863 | 12300 | 0.0 | - |
415
+ | 22.5777 | 12350 | 0.0 | - |
416
+ | 22.6691 | 12400 | 0.0 | - |
417
+ | 22.7605 | 12450 | 0.0 | - |
418
+ | 22.8519 | 12500 | 0.0 | - |
419
+ | 22.9433 | 12550 | 0.0 | - |
420
+ | 23.0347 | 12600 | 0.0 | - |
421
+ | 23.1261 | 12650 | 0.0 | - |
422
+ | 23.2176 | 12700 | 0.0 | - |
423
+ | 23.3090 | 12750 | 0.0 | - |
424
+ | 23.4004 | 12800 | 0.0 | - |
425
+ | 23.4918 | 12850 | 0.0 | - |
426
+ | 23.5832 | 12900 | 0.0 | - |
427
+ | 23.6746 | 12950 | 0.0 | - |
428
+ | 23.7660 | 13000 | 0.0 | - |
429
+ | 23.8574 | 13050 | 0.0 | - |
430
+ | 23.9488 | 13100 | 0.0 | - |
431
+ | 24.0402 | 13150 | 0.0 | - |
432
+ | 24.1316 | 13200 | 0.0 | - |
433
+ | 24.2230 | 13250 | 0.0 | - |
434
+ | 24.3144 | 13300 | 0.0 | - |
435
+ | 24.4059 | 13350 | 0.0 | - |
436
+ | 24.4973 | 13400 | 0.0 | - |
437
+ | 24.5887 | 13450 | 0.0 | - |
438
+ | 24.6801 | 13500 | 0.0 | - |
439
+ | 24.7715 | 13550 | 0.0 | - |
440
+ | 24.8629 | 13600 | 0.0 | - |
441
+ | 24.9543 | 13650 | 0.0 | - |
442
+ | 25.0457 | 13700 | 0.0 | - |
443
+ | 25.1371 | 13750 | 0.0 | - |
444
+ | 25.2285 | 13800 | 0.0 | - |
445
+ | 25.3199 | 13850 | 0.0 | - |
446
+ | 25.4113 | 13900 | 0.0 | - |
447
+ | 25.5027 | 13950 | 0.0 | - |
448
+ | 25.5941 | 14000 | 0.0 | - |
449
+ | 25.6856 | 14050 | 0.0 | - |
450
+ | 25.7770 | 14100 | 0.0 | - |
451
+ | 25.8684 | 14150 | 0.0 | - |
452
+ | 25.9598 | 14200 | 0.0 | - |
453
+ | 26.0512 | 14250 | 0.0 | - |
454
+ | 26.1426 | 14300 | 0.0 | - |
455
+ | 26.2340 | 14350 | 0.0 | - |
456
+ | 26.3254 | 14400 | 0.0 | - |
457
+ | 26.4168 | 14450 | 0.0 | - |
458
+ | 26.5082 | 14500 | 0.0 | - |
459
+ | 26.5996 | 14550 | 0.0 | - |
460
+ | 26.6910 | 14600 | 0.0 | - |
461
+ | 26.7824 | 14650 | 0.0 | - |
462
+ | 26.8739 | 14700 | 0.0 | - |
463
+ | 26.9653 | 14750 | 0.0 | - |
464
+ | 27.0567 | 14800 | 0.0 | - |
465
+ | 27.1481 | 14850 | 0.0 | - |
466
+ | 27.2395 | 14900 | 0.0 | - |
467
+ | 27.3309 | 14950 | 0.0 | - |
468
+ | 27.4223 | 15000 | 0.0 | - |
469
+ | 27.5137 | 15050 | 0.0 | - |
470
+ | 27.6051 | 15100 | 0.0 | - |
471
+ | 27.6965 | 15150 | 0.0 | - |
472
+ | 27.7879 | 15200 | 0.0 | - |
473
+ | 27.8793 | 15250 | 0.0 | - |
474
+ | 27.9707 | 15300 | 0.0 | - |
475
+ | 28.0622 | 15350 | 0.0 | - |
476
+ | 28.1536 | 15400 | 0.0 | - |
477
+ | 28.2450 | 15450 | 0.0 | - |
478
+ | 28.3364 | 15500 | 0.0 | - |
479
+ | 28.4278 | 15550 | 0.0 | - |
480
+ | 28.5192 | 15600 | 0.0 | - |
481
+ | 28.6106 | 15650 | 0.0 | - |
482
+ | 28.7020 | 15700 | 0.0 | - |
483
+ | 28.7934 | 15750 | 0.0 | - |
484
+ | 28.8848 | 15800 | 0.0 | - |
485
+ | 28.9762 | 15850 | 0.0 | - |
486
+ | 29.0676 | 15900 | 0.0 | - |
487
+ | 29.1590 | 15950 | 0.0 | - |
488
+ | 29.2505 | 16000 | 0.0 | - |
489
+ | 29.3419 | 16050 | 0.0 | - |
490
+ | 29.4333 | 16100 | 0.0 | - |
491
+ | 29.5247 | 16150 | 0.0 | - |
492
+ | 29.6161 | 16200 | 0.0 | - |
493
+ | 29.7075 | 16250 | 0.0 | - |
494
+ | 29.7989 | 16300 | 0.0 | - |
495
+ | 29.8903 | 16350 | 0.0 | - |
496
+ | 29.9817 | 16400 | 0.0 | - |
497
+
498
+ ### Framework Versions
499
+ - Python: 3.10.12
500
+ - SetFit: 1.1.0
501
+ - Sentence Transformers: 3.3.1
502
+ - Transformers: 4.44.2
503
+ - PyTorch: 2.2.0a0+81ea7a4
504
+ - Datasets: 3.2.0
505
+ - Tokenizers: 0.19.1
506
+
507
+ ## Citation
508
+
509
+ ### BibTeX
510
+ ```bibtex
511
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
512
+ doi = {10.48550/ARXIV.2209.11055},
513
+ url = {https://arxiv.org/abs/2209.11055},
514
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
515
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
516
+ title = {Efficient Few-Shot Learning Without Prompts},
517
+ publisher = {arXiv},
518
+ year = {2022},
519
+ copyright = {Creative Commons Attribution 4.0 International}
520
+ }
521
+ ```
522
+
523
+ <!--
524
+ ## Glossary
525
+
526
+ *Clearly define terms in order to be accessible across audiences.*
527
+ -->
528
+
529
+ <!--
530
+ ## Model Card Authors
531
+
532
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
533
+ -->
534
+
535
+ <!--
536
+ ## Model Card Contact
537
+
538
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
539
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_domain",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e190faa263df26198013ec68aac5e7895cea32b4a6517a36c42518b124e91a53
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee488abd099ad786f302fe4023e228aa5b50e98b19c1aa89c5e80031e9973278
3
+ size 43967
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff