--- base_model: klue/roberta-base library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 닥터 브로너스 그린티 퓨어 캐스틸 바솝 140g 3개 옵션없음 (주)엠아이인터내셔널 - text: 에치앤지 코스노리 아이래쉬 틴팅 세럼 9g 옵션없음 탑서비스 - text: '[VT] 피디알엔 리들샷 옵션없음 (주)지에스리테일 홈쇼핑' - text: 1950년대 영국체어 옵션없음 4Umall (포유몰) - text: Tip Top 팁탑 포마드 오리지널 120g [한정수량할인] 바르노 포마드_01 바르노 오리지널(수성) 주식회사 설빈 inference: true model-index: - name: SetFit with klue/roberta-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.8909090909090909 name: Metric --- # SetFit with klue/roberta-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 13 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 6 | | | 8 | | | 2 | | | 7 | | | 5 | | | 3 | | | 0 | | | 4 | | | 9 | | | 11 | | | 12 | | | 10 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.8909 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("1950년대 영국체어 옵션없음 4Umall (포유몰)") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.8008 | 33 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 1281 | | 1 | 582 | | 2 | 681 | | 3 | 1592 | | 4 | 587 | | 5 | 706 | | 6 | 1206 | | 7 | 587 | | 8 | 1081 | | 9 | 1077 | | 10 | 224 | | 11 | 567 | | 12 | 699 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0012 | 1 | 0.4342 | - | | 0.0588 | 50 | 0.3693 | - | | 0.1176 | 100 | 0.3229 | - | | 0.1765 | 150 | 0.2888 | - | | 0.2353 | 200 | 0.2413 | - | | 0.2941 | 250 | 0.2136 | - | | 0.3529 | 300 | 0.1925 | - | | 0.4118 | 350 | 0.1672 | - | | 0.4706 | 400 | 0.1529 | - | | 0.5294 | 450 | 0.13 | - | | 0.5882 | 500 | 0.1112 | - | | 0.6471 | 550 | 0.0979 | - | | 0.7059 | 600 | 0.0873 | - | | 0.7647 | 650 | 0.0575 | - | | 0.8235 | 700 | 0.0482 | - | | 0.8824 | 750 | 0.0729 | - | | 0.9412 | 800 | 0.0411 | - | | 1.0 | 850 | 0.0542 | - | | 1.0588 | 900 | 0.0626 | - | | 1.1176 | 950 | 0.0385 | - | | 1.1765 | 1000 | 0.0373 | - | | 1.2353 | 1050 | 0.0276 | - | | 1.2941 | 1100 | 0.0205 | - | | 1.3529 | 1150 | 0.0275 | - | | 1.4118 | 1200 | 0.0226 | - | | 1.4706 | 1250 | 0.0231 | - | | 1.5294 | 1300 | 0.0273 | - | | 1.5882 | 1350 | 0.0183 | - | | 1.6471 | 1400 | 0.0158 | - | | 1.7059 | 1450 | 0.0112 | - | | 1.7647 | 1500 | 0.0068 | - | | 1.8235 | 1550 | 0.0098 | - | | 1.8824 | 1600 | 0.0047 | - | | 1.9412 | 1650 | 0.0053 | - | | 2.0 | 1700 | 0.0027 | - | | 2.0588 | 1750 | 0.0007 | - | | 2.1176 | 1800 | 0.0015 | - | | 2.1765 | 1850 | 0.0042 | - | | 2.2353 | 1900 | 0.002 | - | | 2.2941 | 1950 | 0.0018 | - | | 2.3529 | 2000 | 0.0023 | - | | 2.4118 | 2050 | 0.0025 | - | | 2.4706 | 2100 | 0.0014 | - | | 2.5294 | 2150 | 0.0007 | - | | 2.5882 | 2200 | 0.0005 | - | | 2.6471 | 2250 | 0.0042 | - | | 2.7059 | 2300 | 0.0022 | - | | 2.7647 | 2350 | 0.0028 | - | | 2.8235 | 2400 | 0.0004 | - | | 2.8824 | 2450 | 0.0003 | - | | 2.9412 | 2500 | 0.0009 | - | | 3.0 | 2550 | 0.0002 | - | | 3.0588 | 2600 | 0.0011 | - | | 3.1176 | 2650 | 0.001 | - | | 3.1765 | 2700 | 0.0003 | - | | 3.2353 | 2750 | 0.0006 | - | | 3.2941 | 2800 | 0.0034 | - | | 3.3529 | 2850 | 0.0002 | - | | 3.4118 | 2900 | 0.0012 | - | | 3.4706 | 2950 | 0.0004 | - | | 3.5294 | 3000 | 0.0004 | - | | 3.5882 | 3050 | 0.0002 | - | | 3.6471 | 3100 | 0.0002 | - | | 3.7059 | 3150 | 0.0002 | - | | 3.7647 | 3200 | 0.0001 | - | | 3.8235 | 3250 | 0.002 | - | | 3.8824 | 3300 | 0.0026 | - | | 3.9412 | 3350 | 0.0001 | - | | 4.0 | 3400 | 0.0001 | - | | 4.0588 | 3450 | 0.0001 | - | | 4.1176 | 3500 | 0.0003 | - | | 4.1765 | 3550 | 0.0001 | - | | 4.2353 | 3600 | 0.0005 | - | | 4.2941 | 3650 | 0.0002 | - | | 4.3529 | 3700 | 0.0003 | - | | 4.4118 | 3750 | 0.0001 | - | | 4.4706 | 3800 | 0.0025 | - | | 4.5294 | 3850 | 0.0003 | - | | 4.5882 | 3900 | 0.0003 | - | | 4.6471 | 3950 | 0.0002 | - | | 4.7059 | 4000 | 0.0005 | - | | 4.7647 | 4050 | 0.0002 | - | | 4.8235 | 4100 | 0.0022 | - | | 4.8824 | 4150 | 0.0001 | - | | 4.9412 | 4200 | 0.0001 | - | | 5.0 | 4250 | 0.0009 | - | | 5.0588 | 4300 | 0.0001 | - | | 5.1176 | 4350 | 0.0001 | - | | 5.1765 | 4400 | 0.0002 | - | | 5.2353 | 4450 | 0.0002 | - | | 5.2941 | 4500 | 0.0013 | - | | 5.3529 | 4550 | 0.0005 | - | | 5.4118 | 4600 | 0.0003 | - | | 5.4706 | 4650 | 0.0001 | - | | 5.5294 | 4700 | 0.0001 | - | | 5.5882 | 4750 | 0.0003 | - | | 5.6471 | 4800 | 0.0002 | - | | 5.7059 | 4850 | 0.0002 | - | | 5.7647 | 4900 | 0.0001 | - | | 5.8235 | 4950 | 0.0001 | - | | 5.8824 | 5000 | 0.0001 | - | | 5.9412 | 5050 | 0.0001 | - | | 6.0 | 5100 | 0.0001 | - | | 6.0588 | 5150 | 0.0001 | - | | 6.1176 | 5200 | 0.0009 | - | | 6.1765 | 5250 | 0.0017 | - | | 6.2353 | 5300 | 0.0 | - | | 6.2941 | 5350 | 0.0016 | - | | 6.3529 | 5400 | 0.0001 | - | | 6.4118 | 5450 | 0.0004 | - | | 6.4706 | 5500 | 0.0001 | - | | 6.5294 | 5550 | 0.0011 | - | | 6.5882 | 5600 | 0.0001 | - | | 6.6471 | 5650 | 0.0016 | - | | 6.7059 | 5700 | 0.0008 | - | | 6.7647 | 5750 | 0.0001 | - | | 6.8235 | 5800 | 0.0 | - | | 6.8824 | 5850 | 0.0 | - | | 6.9412 | 5900 | 0.0001 | - | | 7.0 | 5950 | 0.0001 | - | | 7.0588 | 6000 | 0.0001 | - | | 7.1176 | 6050 | 0.0001 | - | | 7.1765 | 6100 | 0.0001 | - | | 7.2353 | 6150 | 0.0 | - | | 7.2941 | 6200 | 0.0001 | - | | 7.3529 | 6250 | 0.0 | - | | 7.4118 | 6300 | 0.0008 | - | | 7.4706 | 6350 | 0.0 | - | | 7.5294 | 6400 | 0.0 | - | | 7.5882 | 6450 | 0.0 | - | | 7.6471 | 6500 | 0.0 | - | | 7.7059 | 6550 | 0.0004 | - | | 7.7647 | 6600 | 0.0 | - | | 7.8235 | 6650 | 0.0 | - | | 7.8824 | 6700 | 0.0 | - | | 7.9412 | 6750 | 0.0001 | - | | 8.0 | 6800 | 0.0 | - | | 8.0588 | 6850 | 0.0 | - | | 8.1176 | 6900 | 0.0 | - | | 8.1765 | 6950 | 0.0 | - | | 8.2353 | 7000 | 0.0 | - | | 8.2941 | 7050 | 0.0001 | - | | 8.3529 | 7100 | 0.0001 | - | | 8.4118 | 7150 | 0.0 | - | | 8.4706 | 7200 | 0.0 | - | | 8.5294 | 7250 | 0.0 | - | | 8.5882 | 7300 | 0.0 | - | | 8.6471 | 7350 | 0.0 | - | | 8.7059 | 7400 | 0.0 | - | | 8.7647 | 7450 | 0.0 | - | | 8.8235 | 7500 | 0.0 | - | | 8.8824 | 7550 | 0.0 | - | | 8.9412 | 7600 | 0.0 | - | | 9.0 | 7650 | 0.0 | - | | 9.0588 | 7700 | 0.0 | - | | 9.1176 | 7750 | 0.0 | - | | 9.1765 | 7800 | 0.0 | - | | 9.2353 | 7850 | 0.0 | - | | 9.2941 | 7900 | 0.0002 | - | | 9.3529 | 7950 | 0.0 | - | | 9.4118 | 8000 | 0.0 | - | | 9.4706 | 8050 | 0.0 | - | | 9.5294 | 8100 | 0.0 | - | | 9.5882 | 8150 | 0.0 | - | | 9.6471 | 8200 | 0.0 | - | | 9.7059 | 8250 | 0.0 | - | | 9.7647 | 8300 | 0.0 | - | | 9.8235 | 8350 | 0.0001 | - | | 9.8824 | 8400 | 0.0 | - | | 9.9412 | 8450 | 0.0 | - | | 10.0 | 8500 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.45.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```