minnehwg commited on
Commit
5689f6b
·
1 Parent(s): 1fc47c8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: finetune-newwiki-summarization-ver-augmented
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # finetune-newwiki-summarization-ver-augmented
16
+
17
+ This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4282
20
+ - Rouge1: 48.7749
21
+ - Rouge2: 26.3665
22
+ - Rougel: 35.7765
23
+ - Rougelsum: 38.0111
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 1e-05
43
+ - train_batch_size: 8
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 7
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
56
+ | 0.6784 | 1.0 | 2312 | 0.5136 | 46.7374 | 23.3000 | 33.5379 | 35.8923 |
57
+ | 0.6015 | 2.0 | 4624 | 0.4759 | 47.7112 | 24.5817 | 34.4939 | 36.9831 |
58
+ | 0.5587 | 3.0 | 6936 | 0.4543 | 48.4891 | 25.6592 | 35.2310 | 37.5477 |
59
+ | 0.5128 | 4.0 | 9248 | 0.4405 | 48.7777 | 26.0690 | 35.5187 | 37.7896 |
60
+ | 0.4899 | 5.0 | 11560 | 0.4338 | 48.6758 | 26.0670 | 35.5783 | 37.8850 |
61
+ | 0.4796 | 6.0 | 13872 | 0.4295 | 48.8914 | 26.5018 | 35.8671 | 38.1289 |
62
+ | 0.4671 | 7.0 | 16184 | 0.4282 | 48.7749 | 26.3665 | 35.7765 | 38.0111 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.17.0
68
+ - Pytorch 2.1.2
69
+ - Datasets 2.18.0
70
+ - Tokenizers 0.15.2