File size: 812 Bytes
760a29b
23f0477
 
 
760a29b
23f0477
 
 
 
 
 
 
 
 
760a29b
 
 
 
23f0477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760a29b
 
 
23f0477
760a29b
23f0477
760a29b
4028904
 
23f0477
4028904
23f0477
4028904
23f0477
4028904
23f0477
4028904
23f0477
4028904
23f0477
4028904
23f0477
4028904
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---

language: en

tags:

- bert

- classification

- pytorch

pipeline_tag: text-classification

---



# BiEncoder Classification Model



This model is a BiEncoder architecture based on BERT for text pair classification.



## Model Details

- Base Model: bert-base-uncased

- Architecture: BiEncoder with BERT base

- Number of classes: 4



## Usage



```python

from transformers import AutoTokenizer

import torch



# Load tokenizer

tokenizer = AutoTokenizer.from_pretrained("minoosh/bert-clf-biencoder-cross_entropy")



# Load model weights

state_dict = torch.load("pytorch_model.bin")



# Initialize model (you'll need the BiEncoderModel class)

model = BiEncoderModel(

    base_model=AutoModel.from_pretrained("bert-base-uncased"),

    num_classes=4

)

model.load_state_dict(state_dict)

```