File size: 3,036 Bytes
a0bf091
 
 
 
 
 
 
 
676aeca
a0bf091
52afb99
a0bf091
 
 
 
 
 
 
 
 
 
 
 
 
676aeca
52afb99
a0bf091
676aeca
 
 
a0bf091
 
676aeca
 
 
 
 
 
a0bf091
676aeca
 
 
a0bf091
 
 
676aeca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0bf091
 
 
 
52afb99
a0bf091
676aeca
 
 
a0bf091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676aeca
 
 
a0bf091
676aeca
 
 
a0bf091
676aeca
 
a0bf091
 
 
676aeca
 
 
 
 
a0bf091
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- axolotl
- generated_from_trainer
datasets:
- tatsu-lab/alpaca
model-index:
- name: Alpaca-Llama-3.2-1B-Instruct
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml


base_model: meta-llama/Llama-3.2-1B
hub_model_id: minpeter/Alpaca-Llama-3.2-1B-Instruct

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: tatsu-lab/alpaca
    type: alpaca
dataset_prepared_path: last_run_prepared
dataset_processes: 1000
val_set_size: 0.05
output_dir: ./outputs/out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

```

</details><br>

# Alpaca-Llama-3.2-1B-Instruct

This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the tatsu-lab/alpaca dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3881

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.5628        | 0.0127 | 1    | 1.5941          |
| 1.4085        | 0.4960 | 39   | 1.4333          |
| 1.3727        | 0.9921 | 78   | 1.3881          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0