--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - axolotl - generated_from_trainer datasets: - tatsu-lab/alpaca model-index: - name: Alpaca-Llama-3.2-1B-Instruct results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: meta-llama/Llama-3.2-1B hub_model_id: minpeter/Alpaca-Llama-3.2-1B-Instruct load_in_8bit: false load_in_4bit: false strict: false datasets: - path: tatsu-lab/alpaca type: alpaca dataset_prepared_path: last_run_prepared dataset_processes: 1000 val_set_size: 0.05 output_dir: ./outputs/out sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# Alpaca-Llama-3.2-1B-Instruct This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the tatsu-lab/alpaca dataset. It achieves the following results on the evaluation set: - Loss: 1.3881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5628 | 0.0127 | 1 | 1.5941 | | 1.4085 | 0.4960 | 39 | 1.4333 | | 1.3727 | 0.9921 | 78 | 1.3881 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0