Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
---
|
5 |
+
# Text Classification of conversation flow
|
6 |
+
|
7 |
+
This a ONNX quantized model and is fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large).
|
8 |
+
The original model can be found [here](minuva/MiniLMv2-agentflow-v2)
|
9 |
+
|
10 |
+
A flow label is orthogonal to the main conversation goal, implying that it categorizes actions or responses in a way that is independent from the primary objective of the conversation.
|
11 |
+
|
12 |
+
This model should be used *only* for agent dialogs.
|
13 |
+
|
14 |
+
# Usage
|
15 |
+
|
16 |
+
## Installation
|
17 |
+
```bash
|
18 |
+
pip install tokenizers
|
19 |
+
pip install onnxruntime
|
20 |
+
git clone https://huggingface.co/minuva/MiniLMv2-agentflow-v2-onnx
|
21 |
+
```
|
22 |
+
|
23 |
+
|
24 |
+
## Run the Model
|
25 |
+
|
26 |
+
```py
|
27 |
+
import os
|
28 |
+
import numpy as np
|
29 |
+
import json
|
30 |
+
|
31 |
+
from tokenizers import Tokenizer
|
32 |
+
from onnxruntime import InferenceSession
|
33 |
+
|
34 |
+
|
35 |
+
model_name = "minuva/MiniLMv2-agentflow-v2-onnx"
|
36 |
+
|
37 |
+
tokenizer = Tokenizer.from_pretrained(model_name)
|
38 |
+
tokenizer.enable_padding(
|
39 |
+
pad_token="<pad>",
|
40 |
+
pad_id=1,
|
41 |
+
)
|
42 |
+
tokenizer.enable_truncation(max_length=256)
|
43 |
+
batch_size = 16
|
44 |
+
|
45 |
+
texts = ["thats my mistake"]
|
46 |
+
outputs = []
|
47 |
+
model = InferenceSession("MiniLMv2-agentflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider'])
|
48 |
+
|
49 |
+
with open(os.path.join("MiniLMv2-agentflow-v2-onnx", "config.json"), "r") as f:
|
50 |
+
config = json.load(f)
|
51 |
+
|
52 |
+
output_names = [output.name for output in model.get_outputs()]
|
53 |
+
input_names = [input.name for input in model.get_inputs()]
|
54 |
+
|
55 |
+
for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
|
56 |
+
encodings = tokenizer.encode_batch(list(subtexts))
|
57 |
+
inputs = {
|
58 |
+
"input_ids": np.vstack(
|
59 |
+
[encoding.ids for encoding in encodings],
|
60 |
+
),
|
61 |
+
"attention_mask": np.vstack(
|
62 |
+
[encoding.attention_mask for encoding in encodings],
|
63 |
+
),
|
64 |
+
"token_type_ids": np.vstack(
|
65 |
+
[encoding.type_ids for encoding in encodings],
|
66 |
+
),
|
67 |
+
}
|
68 |
+
|
69 |
+
for input_name in input_names:
|
70 |
+
if input_name not in inputs:
|
71 |
+
raise ValueError(f"Input name {input_name} not found in inputs")
|
72 |
+
|
73 |
+
inputs = {input_name: inputs[input_name] for input_name in input_names}
|
74 |
+
output = np.squeeze(
|
75 |
+
np.stack(
|
76 |
+
model.run(output_names=output_names, input_feed=inputs)
|
77 |
+
),
|
78 |
+
axis=0,
|
79 |
+
)
|
80 |
+
outputs.append(output)
|
81 |
+
|
82 |
+
outputs = np.concatenate(outputs, axis=0)
|
83 |
+
scores = 1 / (1 + np.exp(-outputs))
|
84 |
+
results = []
|
85 |
+
for item in scores:
|
86 |
+
labels = []
|
87 |
+
scores = []
|
88 |
+
for idx, s in enumerate(item):
|
89 |
+
labels.append(config["id2label"][str(idx)])
|
90 |
+
scores.append(float(s))
|
91 |
+
results.append({"labels": labels, "scores": scores})
|
92 |
+
|
93 |
+
|
94 |
+
res = []
|
95 |
+
|
96 |
+
for result in results:
|
97 |
+
joined = list(zip(result['labels'], result['scores']))
|
98 |
+
max_score = max(joined, key=lambda x: x[1])
|
99 |
+
res.append(max_score)
|
100 |
+
|
101 |
+
res
|
102 |
+
# [('agent_apology_error_mistake', 0.9991708993911743)]
|
103 |
+
```
|
104 |
+
|
105 |
+
# Categories Explanation
|
106 |
+
|
107 |
+
<details>
|
108 |
+
<summary>Click to expand!</summary>
|
109 |
+
|
110 |
+
- OTHER: Responses or actions by the agent that do not fit into the predefined categories or are outside the scope of the specific interactions listed.
|
111 |
+
|
112 |
+
- agent_apology_error_mistake: When the agent acknowledges an error or mistake in the information provided or in the handling of the request.
|
113 |
+
|
114 |
+
- agent_apology_unsatisfactory: The agent expresses an apology for providing an unsatisfactory response or for any dissatisfaction experienced by the user.
|
115 |
+
|
116 |
+
- agent_didnt_understand: Indicates that the agent did not understand the user's request or question.
|
117 |
+
|
118 |
+
- agent_limited_capabilities: The agent communicates its limitations in addressing certain requests or providing certain types of information.
|
119 |
+
|
120 |
+
- agent_refuses_answer: When the agent explicitly refuses to answer a question or fulfill a request, due to policy restrictions or ethical considerations.
|
121 |
+
|
122 |
+
- image_limitations": The agent points out limitations related to handling or interpreting images.
|
123 |
+
|
124 |
+
- no_information_doesnt_know": The agent indicates that it has no information available or does not know the answer to the user's question.
|
125 |
+
|
126 |
+
- success_and_followup_assistance": The agent successfully provides the requested information or service and offers further assistance or follow-up actions if needed.
|
127 |
+
</details>
|
128 |
+
|
129 |
+
<br>
|
130 |
+
|
131 |
+
|
132 |
+
# Metrics in our private test dataset
|
133 |
+
| Model (params) | Loss | Accuracy | F1 |
|
134 |
+
|--------------------|-------------|----------|--------|
|
135 |
+
| minuva/MiniLMv2-agentflow-v2 (33M) | 0.1462 | 0.9773 | 0.9774 |
|
136 |
+
| minuva/MiniLMv2-agentflow-v2-onnx (33M) | - | 0.97394 | 0.97392 |
|
137 |
+
|
138 |
+
# Deployment
|
139 |
+
|
140 |
+
Check [our repository](https://github.com/minuva/flow-cloudrun) to see how to easily deploy this (quantized) model in a serverless environment with fast CPU inference and light resource utilization.
|