File size: 2,603 Bytes
ddb19b1
12057ae
ddb19b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e706cc
ddb19b1
 
 
 
 
 
 
 
12057ae
ddb19b1
6e706cc
 
ddb19b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e706cc
12057ae
 
ddb19b1
12057ae
 
ddb19b1
 
6e706cc
 
ddb19b1
 
 
 
6e706cc
 
 
 
 
 
 
 
 
 
 
 
 
 
ddb19b1
 
 
 
 
12057ae
ddb19b1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: peft
language:
- it
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- ASR_Synthetic_Speecht5_TTS
metrics:
- wer
model-index:
- name: Whisper Medium
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: ASR_Synthetic_Speecht5_TTS
      type: ASR_Synthetic_Speecht5_TTS
      config: default
      split: test
      args: default
    metrics:
    - type: wer
      value: 75.9656652360515
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the ASR_Synthetic_Speecht5_TTS dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1269
- Wer: 75.9657

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 300
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer      |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 7.8335        | 0.0244 | 25   | 7.0413          | 196.1373 |
| 6.5445        | 0.0489 | 50   | 5.3231          | 160.5150 |
| 4.2166        | 0.0733 | 75   | 3.6955          | 144.6352 |
| 2.2081        | 0.0978 | 100  | 3.5441          | 84.9785  |
| 1.815         | 0.1222 | 125  | 3.4335          | 83.4049  |
| 1.6465        | 0.1467 | 150  | 3.2851          | 136.9099 |
| 1.5241        | 0.1711 | 175  | 3.3021          | 357.3677 |
| 1.3811        | 0.1956 | 200  | 3.2476          | 81.5451  |
| 1.2553        | 0.2200 | 225  | 3.1495          | 132.1888 |
| 1.3158        | 0.2445 | 250  | 3.1816          | 76.9671  |
| 1.2942        | 0.2689 | 275  | 3.1349          | 74.3920  |
| 1.1935        | 0.2934 | 300  | 3.1269          | 75.9657  |


### Framework versions

- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.2.0
- Datasets 3.1.0
- Tokenizers 0.19.1