--- library_name: peft language: - it license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - ASR_Synthetic_Speecht5_TTS metrics: - wer model-index: - name: Whisper Medium results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ASR_Synthetic_Speecht5_TTS type: ASR_Synthetic_Speecht5_TTS config: default split: test args: default metrics: - type: wer value: 171.5307582260372 name: Wer --- # Whisper Medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the ASR_Synthetic_Speecht5_TTS dataset. It achieves the following results on the evaluation set: - Loss: 2.9413 - Wer: 171.5308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 6.8678 | 0.0244 | 25 | 4.4434 | 154.2203 | | 2.6877 | 0.0489 | 50 | 3.4026 | 144.0629 | | 1.8792 | 0.0733 | 75 | 3.2962 | 77.3963 | | 1.5587 | 0.0978 | 100 | 3.2969 | 78.9700 | | 1.4194 | 0.1222 | 125 | 2.9920 | 75.1073 | | 1.2356 | 0.1467 | 150 | 2.9471 | 184.2632 | | 1.1741 | 0.1711 | 175 | 2.9542 | 189.4134 | | 1.0451 | 0.1956 | 200 | 2.9413 | 171.5308 | ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.2.0 - Datasets 3.1.0 - Tokenizers 0.19.1