--- library_name: peft language: - it license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - ASR_Synthetic_Speecht5_TTS metrics: - wer model-index: - name: Whisper Medium results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ASR_Synthetic_Speecht5_TTS type: ASR_Synthetic_Speecht5_TTS config: default split: test args: default metrics: - type: wer value: 141.63090128755366 name: Wer --- # Whisper Medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the ASR_Synthetic_Speecht5_TTS dataset. It achieves the following results on the evaluation set: - Loss: 9.8059 - Wer: 141.6309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:| | 6.891 | 0.0244 | 25 | 4.4284 | 157.0815 | | 3.4032 | 0.0489 | 50 | 5.4864 | 1025.8941 | | 6.9892 | 0.0733 | 75 | 11.7361 | 120.7439 | | 7.1852 | 0.0978 | 100 | 9.8059 | 141.6309 | ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.2.0 - Datasets 3.1.0 - Tokenizers 0.19.1