File size: 2,326 Bytes
fd41595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: peft
language:
- it
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- Dysarthria_Synthetic_Easycall_Common
metrics:
- wer
model-index:
- name: Whisper Medium
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Dysarthria_Synthetic_Easycall_Common
      type: Dysarthria_Synthetic_Easycall_Common
      config: default
      split: train
      args: default
    metrics:
    - type: wer
      value: 62.58064516129033
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Dysarthria_Synthetic_Easycall_Common dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8596
- Wer: 62.5806

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer      |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 5.3706        | 0.6897 | 50   | 4.0385          | 81.2903  |
| 1.6886        | 1.3793 | 100  | 1.1083          | 72.5806  |
| 0.6572        | 2.0690 | 150  | 0.9583          | 63.2258  |
| 0.4765        | 2.7586 | 200  | 0.9143          | 121.9355 |
| 0.3623        | 3.4483 | 250  | 0.8818          | 118.0645 |
| 0.2794        | 4.1379 | 300  | 0.8554          | 63.2258  |
| 0.2252        | 4.8276 | 350  | 0.8596          | 62.5806  |


### Framework versions

- PEFT 0.14.0
- Transformers 4.45.2
- Pytorch 2.2.0
- Datasets 3.2.0
- Tokenizers 0.20.3