--- library_name: peft language: - it base_model: b-brave/asr_double_training_15-10-2024_merged tags: - generated_from_trainer datasets: - ASR_BB_and_EC metrics: - wer model-index: - name: Whisper Medium results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ASR_BB_and_EC type: ASR_BB_and_EC config: default split: test args: default metrics: - type: wer value: 36.926889714993806 name: Wer --- # Whisper Medium This model is a fine-tuned version of [b-brave/asr_double_training_15-10-2024_merged](https://huggingface.co/b-brave/asr_double_training_15-10-2024_merged) on the ASR_BB_and_EC dataset. It achieves the following results on the evaluation set: - Loss: 0.4620 - Wer: 36.9269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: reduce_lr_on_plateau - lr_scheduler_warmup_steps: 100 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.7705 | 0.8929 | 100 | 0.4885 | 36.5551 | | 0.7193 | 1.7857 | 200 | 0.4840 | 36.6791 | | 0.7376 | 2.6786 | 300 | 0.4808 | 36.4312 | | 0.6975 | 3.5714 | 400 | 0.4783 | 36.4312 | | 0.6499 | 4.4643 | 500 | 0.4763 | 35.8116 | | 0.7137 | 5.3571 | 600 | 0.4744 | 35.9356 | | 0.6397 | 6.25 | 700 | 0.4727 | 35.9356 | | 0.6441 | 7.1429 | 800 | 0.4708 | 35.9356 | | 0.6756 | 8.0357 | 900 | 0.4690 | 35.9356 | | 0.6331 | 8.9286 | 1000 | 0.4673 | 36.3073 | | 0.6411 | 9.8214 | 1100 | 0.4656 | 36.3073 | | 0.6029 | 10.7143 | 1200 | 0.4638 | 36.6791 | | 0.6229 | 11.6071 | 1300 | 0.4620 | 36.9269 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.2.0 - Datasets 3.1.0 - Tokenizers 0.20.3