--- library_name: transformers license: mit datasets: - mirfan899/ur_news_sum language: - ur base_model: - NousResearch/Llama-2-7b-chat-hf --- # Model Card for Model ID llama 2 model for news summarization ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Muhammad Irfan - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** LLM - **Language(s) (NLP):** Urdu - **License:** MIT - **Finetuned from model [optional]:** NousResearch/Llama-2-7b-chat-hf ### Model Sources [optional] - **Dataset:** (mirfan899/ur_news_sum)[mirfan899/ur_news_sum] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ### How to Get Started with the Model Use this model to summarize the news article. ```python from datasets import load_dataset from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, pipeline, logging, ) dataset = load_dataset("mirfan899/ur_news_sum") DEFAULT_SYSTEM_PROMPT = """ Below is a news article written by a human. Write a summary of the news. """.strip() conversation = dataset["test"][0]["text"] input = f"""### Instruction: {DEFAULT_SYSTEM_PROMPT} ### Input: {conversation.strip()} ### Response: """.strip() # Run text generation pipeline with our next model pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200) result = pipe(f"{input}") print(result[0]['generated_text']) ``` ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use Its based on News dataset and maybe not work well for different domains. ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Use it for news summarization. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]