Misha Lvovsky
Add padding to decoded DCT coefficients in decode method so that it always tries
1fefe90
import logging | |
from typing import ClassVar | |
import numpy as np | |
from scipy.fft import dct | |
from scipy.fft import idct | |
from tokenizers import ByteLevelBPETokenizer | |
from tokenizers.trainers import BpeTrainer | |
from transformers import PreTrainedTokenizerFast | |
from transformers.processing_utils import ProcessorMixin | |
class UniversalActionProcessor(ProcessorMixin): | |
attributes: ClassVar[list[str]] = ["bpe_tokenizer"] | |
bpe_tokenizer_class: str = "AutoTokenizer" | |
def __init__( | |
self, | |
bpe_tokenizer: PreTrainedTokenizerFast, | |
scale: float = 10, | |
vocab_size: int = 1024, | |
min_token: int = 0, | |
*, | |
action_dim: int | None = None, | |
time_horizon: int | None = None, | |
): | |
self.scale = scale | |
self.vocab_size = vocab_size | |
self.min_token = min_token | |
# Action horizon and dimension needed during decoding. These can be specified | |
# in three ways (in order of priority): | |
# 1. passed in as kwargs to decode() | |
# 2. in the constructor | |
# 3. cached from the last time decode() was called | |
self.time_horizon = time_horizon | |
self.action_dim = action_dim | |
self.called_time_horizon = time_horizon | |
self.called_action_dim = action_dim | |
super().__init__(bpe_tokenizer) | |
def __call__(self, action_chunk: np.array) -> np.array: | |
assert action_chunk.ndim <= 3, "Only 3 dimensions supported: [batch, timesteps, action_dim]" | |
if action_chunk.ndim == 2: | |
action_chunk = action_chunk[None, ...] | |
# Cache the time horizon and action dimension for decoding | |
self.called_time_horizon = action_chunk.shape[-2] | |
self.called_action_dim = action_chunk.shape[-1] | |
dct_coeff = dct(action_chunk, axis=1, norm="ortho") | |
dct_coeff = np.around(dct_coeff * self.scale) | |
tokens = [] | |
for elem in dct_coeff: | |
token_str = "".join(map(chr, np.maximum(elem.flatten() - self.min_token, 0).astype(int))) | |
tokens.append(self.bpe_tokenizer(token_str)["input_ids"]) | |
return tokens | |
def decode( | |
self, | |
tokens: list[list[int]], | |
*, | |
time_horizon: int | None = None, | |
action_dim: int | None = None, | |
) -> np.array: | |
self.time_horizon = time_horizon or self.time_horizon or self.called_time_horizon | |
self.action_dim = action_dim or self.action_dim or self.called_action_dim | |
# Cache the time horizon and action dimension for the next call | |
self.called_time_horizon = self.time_horizon | |
self.called_action_dim = self.action_dim | |
assert ( | |
self.time_horizon is not None and self.action_dim is not None | |
), "Tokenizer not initialized, call encode() once or pass in time_horizon and action_dim." | |
decoded_actions = [] | |
for token in tokens: | |
decoded_tokens = self.bpe_tokenizer.decode(token) | |
decoded_flat_dct_coeff = np.array(list(map(ord, decoded_tokens))) + self.min_token | |
unpadded_size = decoded_flat_dct_coeff.size | |
padded_size = self.time_horizon * self.action_dim | |
padded_flat_dct_coeff = np.zeros(shape=padded_size, dtype=decoded_flat_dct_coeff.dtype) | |
copy_size = min(unpadded_size, padded_size) | |
padded_flat_dct_coeff[:copy_size] = decoded_flat_dct_coeff[:copy_size] | |
decoded_dct_coeff = padded_flat_dct_coeff.reshape(-1, self.action_dim) | |
assert ( | |
decoded_dct_coeff.shape | |
== ( | |
self.time_horizon, | |
self.action_dim, | |
) | |
), f"Decoded DCT coefficients have shape {decoded_dct_coeff.shape}, expected ({self.time_horizon}, {self.action_dim})" | |
decoded_actions.append(idct(decoded_dct_coeff / self.scale, axis=0, norm="ortho")) | |
return np.stack(decoded_actions) | |
def fit( | |
cls, | |
action_data: list[np.array], | |
scale: float = 10, | |
vocab_size: int = 1024, | |
*, | |
time_horizon: int | None = None, | |
action_dim: int | None = None, | |
) -> "UniversalActionProcessor": | |
# Run DCT over all inputs | |
dct_tokens = [dct(a, axis=0, norm="ortho").flatten() for a in action_data] | |
# Quantize and find min token | |
max_token = int(np.around(np.concatenate(dct_tokens) * scale).max()) | |
min_token = int(np.around(np.concatenate(dct_tokens) * scale).min()) | |
min_vocab_size = max_token - min_token | |
assert ( | |
min_vocab_size <= vocab_size | |
), f"Vocab size {vocab_size} is too small for the range of tokens {min_vocab_size}" | |
if min_vocab_size + 100 > vocab_size: | |
logging.warning( | |
f"Initial alphabet size {min_vocab_size} is almost as large as the vocab" | |
f"size {vocab_size}, consider increasing vocab size" | |
) | |
# Make token iterator for BPE training | |
def _token_iter(): | |
for tokens in dct_tokens: | |
rounded_tokens = np.around(tokens * scale) - min_token | |
rounded_tokens = rounded_tokens.astype(int) | |
string = "".join(map(chr, rounded_tokens)) | |
yield string | |
# Train BPE tokenizer | |
bpe = ByteLevelBPETokenizer() | |
# Set up the entire range of possible tokens as the initial alphabet | |
alphabet = [chr(i) for i in range(max_token - min_token + 1)] | |
trainer = BpeTrainer( | |
vocab_size=vocab_size, | |
min_frequency=2, | |
show_progress=True, | |
special_tokens=[], | |
initial_alphabet=alphabet, | |
max_token_length=10000, | |
) | |
# Train the inner tokenizer (don't use ByteLevelBPETokenizer.train_from_iterator() | |
# because it doesn't support custom alphabets) | |
bpe._tokenizer.train_from_iterator(_token_iter(), trainer=trainer) | |
return cls( | |
PreTrainedTokenizerFast(tokenizer_object=bpe, clean_up_tokenization_spaces=False), | |
scale=scale, | |
vocab_size=vocab_size, | |
min_token=min_token, | |
time_horizon=time_horizon, | |
action_dim=action_dim, | |
) | |