Audio-Text-to-Text
glap_model
File size: 5,490 Bytes
e4066f7
 
3fbdad6
 
e4066f7
 
 
 
 
 
 
 
 
 
 
43e40e9
e4066f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf0dcc5
 
 
 
 
e4066f7
3fbdad6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
license: apache-2.0
pipeline_tag: audio-text-to-text
library_name: glap_model
---

<div align="center">
    <h1>
    GLAP (Generalized Language Audio Pretraining)
    </h1>
    <p>
    Official PyTorch code for <b>GLAP</b> <br>
    <b><em>Generalized Language Audio Pretraining</em></b>
    </p>
    </p>
    <a href="https://arxiv.org/abs/2506.11350"><img src="https://img.shields.io/badge/arXiv-2506.11350-b31b1b" alt="version"></a>
    <a href="https://github.com/xiaomi/glap"><img src="https://img.shields.io/badge/Platform-linux-lightgrey" alt="version"></a>
    <a href="https://www.python.org"><img src="https://img.shields.io/badge/Python-3.10+-orange" alt="version"></a>
    <a href="https://pytorch.org"><img src="https://img.shields.io/badge/PyTorch-2.0+-brightgreen" alt="python"></a>
    <a href="https://www.apache.org/licenses/LICENSE-2.0"><img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" alt="mit"></a>
    <img src="https://img.shields.io/pypi/dm/glap_model" alt="PyPI Downloads">

</div>




# GLAP (Generalized Language Audio Pretraining)


<img src="capabilities.png" alt="GLAP capabiltiies" style="height: 600px;">


## Features


* *First* all-in-one solution for general audio-text retrieval. 
* Multilingual (8 + Languages) Speech, Music and Sound retrieval. 
* Music and Sound retrieval performance in English matches previous baselines, while also **supporting** Languages like Japanese, German, Spanish, Chinese, Dutch and more.


## Usage


```bash
pip install glap_model
```


### Scoring audio-text pairs

We provide a simple commandline tool:

```bash
score_glap audio_input_file text1;text2;text3
```

Or in Python:

```python
import torch
from glap_model import glap_inference

audio = torch.randn(1, 160000).tanh() # 10s of heavy noise

glap_model = glap_inference()

score = glap_model.score_forward(audio, text=["the sound of noise","a car is driving","a person is speaking"])
print(score)
```



### Recommended Prompts

| Task   | Prompt                                  |
|--------|-----------------------------------------|
| Speech | {label}                                 |
| Music  | The music in the style of {label}.      |
| Sound  | The sound of {label} can be heard.      |


### Batched scoring


```python
import torch
from glap_model import glap_inference

glap_model = glap_inference()
audio = torch.randn(1, 64000).tanh()
prefix = "The sound of"
labels = [ f"{prefix} {label}" for label in ("Cat","Dog","Water","Noise")]
text_embeds = glap_model.encode_text(labels)
audio_embeds = glap_model.encode_audio(audio)
scores = glap_model.score(audio_embeds, text_embeds)
for label_name, score in zip(labels, scores):
  print(label_name,score)


```

## Development


### UV (Recommended)

```bash
git clone https://github.com/xiaomi-research/GLAP
cd GLAP
uv venv --python 3.10
source activate .venv/bin/activate
uv sync

#python3 -m pip install .
# Additionally, sndfile is needed
# conda install -c conda-forge libsndfile==1.0.31
```

### Pip

```bash
git clone https://github.com/xiaomi-research/GLAP
cd GLAP
python3 -m pip install .
# Additionally, sndfile is needed
# conda install -c conda-forge libsndfile==1.0.31
# Or if you have root, use your package manager
```


### Prepare data


Data needs to be in `tar/tar.gz` format:

```
   # tar -tf a.tar
908-31957-0013.flac
908-31957-0013.json
2961-960-0013.flac
2961-960-0013.json
```


Each `.json` should have one of three fields `caption`, `captions` or `text`.
Data preparation can be done using the `wavlist_to_tar` script, which is provided in the `dasheng` dependency.
Further information how to process data can be seen [here](https://github.com/XiaoMi/dasheng?tab=readme-ov-file#3-training).

### Training


For reference, we provide our original training config for GLAP `configs/train/multilingual_dasheng_asr_sound2_sigmoidloss_balanced.yaml`.


```bash
accelerate launch --mixed-precision='fp16' run.py train configs/train/multilingual_dasheng_asr_sound2_sigmoidloss_balanced.yaml
```


### Zeroshot eval (one sample)


```bash
# There ; is a separator for different text keys
python3 run.py zeroshot pretrained_checkpoint/glap_checkpoint.pt PATH_TO_WAV_FLAC_MP3_SAMPLE.wav "The sound of a horse;Car;Mama;The sound of music;somebody is speaking;The sound of ein Pferd;一只马;Music is played;音乐的声音;Musik ist zu hoeren";Zero;One;Two;Three"
```

### Retrieval scoring

```bash
# Should be run on a single GPU
accelerate launch --mixed-precision='fp16' run.py evaluate PATH_TO_CHECKPOINT
```



### Notes on DDP

Using uneven training datasets without `resample=True` is not recommended


## Translating data into a target language

For our experiments we used SONAR to translate audio captions into seven target languages. This can be reproduced using our code:


```bash
python3 run.py translate_sonar data/WavCaps/freesound/freesound_train_sample_0000* --output_path data/translations/WavCaps/freesound/
```

DDP is also supported:

```bash
accelerate launch run.py translate_sonar  data/WavCaps/freesound/freesound_train_sample_0000* --output_path data/translations/WavCaps/freesound/
```

## Citation

```bibtex
@misc{2506.11350,
Author = {Heinrich Dinkel and Zhiyong Yan and Tianzi Wang and Yongqing Wang and Xingwei Sun and Yadong Niu and Jizhong Liu and Gang Li and Junbo Zhang and Jian Luan},
Title = {GLAP: General contrastive audio-text pretraining across domains and languages},
Year = {2025},
Eprint = {arXiv:2506.11350},
}
```