File size: 28,695 Bytes
63c1fa6 59794e9 63c1fa6 c91d3d8 ebe2f83 59794e9 ebe2f83 63c1fa6 e7d73fd c91d3d8 63c1fa6 9575889 63c1fa6 9575889 63c1fa6 9575889 63c1fa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
---
pipeline_tag: image-text-to-text
library_name: vllm
tags:
- multimodal
- mistral
- pixtral
---
# pixtral-12b-240910
> [!WARNING]
> This model checkpoint is provided as-is and might not be up-to-date. It mirrors the torrent released by Mistral AI and uploaded by the community.
>
> Interested in the Transformers-compatible checkpoint? See https://huggingface.co/mistral-community/pixtral-12b.
Downloaded from the magnet link:
magnet:?xt=urn:btih:7278e625de2b1da598b23954c13933047126238a&dn=pixtral-12b-240910&tr=udp%3A%2F%http://2Ftracker.opentrackr.org%3A1337%2Fannounce&tr=udp%3A%2F%http://2Fopen.demonii.com%3A1337%2Fannounce&tr=http%3A%2F%http://2Ftracker.ipv6tracker.org%3A80%2Fannounce
Published by MistralAI in twitter/X:
https://x.com/MistralAI/status/1833758285167722836
Release information:
https://github.com/mistralai/mistral-common/releases/tag/v1.4.0
# Pixtral is out!
Mistral common has image support! You can now pass images and URLs alongside text into the user message.
```
pip install --upgrade mistral_common
```
To use the model checkpoint:
```
# pip install huggingface-hub
from huggingface_hub import snapshot_download
snapshot_download(repo_id="mistral-community/pixtral-12b-240910", local_dir="...")
```
βββββ
ββββββββββββββββββ
βββββββββββββββββββββββββββββββ
ββββββββββββββββββββββββββββββββββ
ββββββββββββββ ββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββ βββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ βββββββ
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ βββ
ββββββββββββββββββββββββββββββββ ββββββββββββββββββ
ββββββββββββββββββββββββββββ
βββββββββββββββββ
βββββ
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β PIXTRAL - 12B - v0.1 10/09/24 β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β β
β Β·Β· md5sum Β·Β· β
β β
β b8e9126ef0c15a1130c14b15e8432a67 consolidated.safetensors β
β 68b39355a7b14a7d653292dab340a0be params.json β
β 10229adc84036ff8fe44a2a8e2ad9ba9 tekken.json β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β β
β Β·Β· Released by the Mistral AI team Β·Β· β
β β
β - Use GELU for the vision adapter β
β - Use 2D ROPE for the vision encoder β
β β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
## Images
You can encode images as follows
```python
from mistral_common.protocol.instruct.messages import (
UserMessage,
TextChunk,
ImageURLChunk,
ImageChunk,
)
from PIL import Image
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
tokenizer = MistralTokenizer.from_model("pixtral")
image = Image.new('RGB', (64, 64))
# tokenize images and text
tokenized = tokenizer.encode_chat_completion(
ChatCompletionRequest(
messages=[
UserMessage(
content=[
TextChunk(text="Describe this image"),
ImageChunk(image=image),
]
)
],
model="pixtral",
)
)
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
# Count the number of tokens
print("# tokens", len(tokens))
print("# images", len(images))
```
## Image URLs
You can pass image url which will be automatically downloaded
```python
url_dog = "https://picsum.photos/id/237/200/300"
url_mountain = "https://picsum.photos/seed/picsum/200/300"
# tokenize image urls and text
tokenized = tokenizer.encode_chat_completion(
ChatCompletionRequest(
messages=[
UserMessage(
content=[
TextChunk(text="Can this animal"),
ImageURLChunk(image_url=url_dog),
TextChunk(text="live here?"),
ImageURLChunk(image_url=url_mountain),
]
)
],
model="pixtral",
)
)
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
# Count the number of tokens
print("# tokens", len(tokens))
print("# images", len(images))
```
# ImageData
You can also pass image encoded as base64
```python
tokenized = tokenizer.encode_chat_completion(
ChatCompletionRequest(
messages=[
UserMessage(
content=[
TextChunk(text="What is this?"),
ImageURLChunk(image_url=""),
]
)
],
model="pixtral",
)
)
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
# Count the number of tokens
print("# tokens", len(tokens))
print("# images", len(images))
```
|