vllm
patrickvonplaten commited on
Commit
0c80d11
1 Parent(s): 1b91506

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +168 -3
README.md CHANGED
@@ -1,3 +1,168 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - fr
5
+ - de
6
+ - es
7
+ - it
8
+ - pt
9
+ - ru
10
+ - zh
11
+ - ja
12
+ license: apache-2.0
13
+ library_name: vllm
14
+ extra_gated_description: If you want to learn more about how we process your personal
15
+ data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
16
+ ---
17
+
18
+ # Model Card for Pixtral-12B-Base-2409
19
+
20
+ The Pixtral-12B-Base-2409 is a Multimodal Model of 12B parameters plus a 400M parameter vision encoder.
21
+
22
+ For more details about this model please refer to our release [blog post](https://mistral.ai/news/pixtral-12b/).
23
+
24
+ Feel free to try it [here](https://chat.mistral.ai/chat)
25
+
26
+ ## Key features
27
+ - Natively multimodal, trained with interleaved image and text data
28
+ - 12B parameter Multimodal Decoder + 400M parameter Vision Encoder
29
+ - Supports variable image sizes
30
+ - Leading performance in its weight class on multimodal tasks
31
+ - Maintains state-of-the-art performance on text-only benchmarks
32
+ - Sequence length: 128k
33
+ - License: Apache 2.0
34
+
35
+ ## Benchmarks
36
+
37
+ TODO
38
+
39
+ ### Multimodal Benchmarks
40
+
41
+ TODO
42
+
43
+ ### Instruction Following
44
+
45
+ TODO
46
+
47
+ ### Text Benchmarks
48
+
49
+ TODO
50
+
51
+ ### Comparison with Closed Source and Larger Models
52
+
53
+ TODO
54
+
55
+ ## Usage Examples
56
+
57
+ ### vLLM (recommended)
58
+
59
+ We recommend using Pixtral with the [vLLM library](https://github.com/vllm-project/vllm)
60
+ to implement production-ready inference pipelines with Pixtral.
61
+
62
+ **_Installation_**
63
+
64
+ Make sure you install `vLLM >= v1.6.2`:
65
+
66
+ ```
67
+ pip install --upgrade vllm
68
+ ```
69
+
70
+ Also make sure you have `mistral_common >= 1.4.4` installed:
71
+
72
+ ```
73
+ pip install --upgrade mistral_common
74
+ ```
75
+
76
+ You can also make use of a ready-to-go [docker image](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39?context=explore).
77
+
78
+ **_Example_**
79
+
80
+ ```py
81
+ from vllm import LLM
82
+ from vllm.sampling_params import SamplingParams
83
+
84
+ model_name = "mistralai/Pixtral-12B-Base-2409"
85
+
86
+ sampling_params = SamplingParams(max_tokens=8192)
87
+
88
+ llm = LLM(model=model_name, tokenizer_mode="mistral")
89
+
90
+ prompt = "Describe this image in one sentence."
91
+ image_url = "https://picsum.photos/id/237/200/300"
92
+
93
+ messages = [
94
+ {
95
+ "role": "user",
96
+ "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": image_url}}]
97
+ },
98
+ ]
99
+
100
+ outputs = llm.chat(messages, sampling_params=sampling_params)
101
+
102
+ print(outputs[0].outputs[0].text)
103
+ ```
104
+
105
+ ### Mistral-inference
106
+
107
+ We recommend using [mistral-inference](https://github.com/mistralai/mistral-inference) to quickly try out / "vibe-check" Pixtral.
108
+
109
+
110
+ **_Install_**
111
+
112
+ Make sure to have `mistral_inference >= 1.4.1` installed.
113
+
114
+ ```
115
+ pip install mistral_inference --upgrade
116
+ ```
117
+
118
+ **_Download_**
119
+
120
+ ```py
121
+ from huggingface_hub import snapshot_download
122
+ from pathlib import Path
123
+
124
+ mistral_models_path = Path.home().joinpath('mistral_models', 'Pixtral')
125
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
126
+
127
+ snapshot_download(repo_id="mistralai/Pixtral-12B-Base-2409", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
128
+ ```
129
+
130
+ **_Python_**
131
+
132
+ You can also run the model in a Python shell as follows.
133
+
134
+ ```py
135
+ from mistral_inference.transformer import Transformer
136
+ from mistral_inference.generate import generate
137
+
138
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
139
+ from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk
140
+ from mistral_common.protocol.instruct.request import CompletionRequest
141
+
142
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
143
+ model = Transformer.from_folder(mistral_models_path)
144
+
145
+ url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"
146
+ prompt = "The above image presents a"
147
+
148
+ completion_request = CompletionRequest(prompt=[UserMessage(content=[ImageURLChunk(image_url=url), TextChunk(text=prompt)])])
149
+
150
+ encoded = tokenizer.encode_chat_completion(completion_request)
151
+
152
+ images = encoded.images
153
+ tokens = encoded.tokens
154
+
155
+ out_tokens, _ = generate([tokens], model, images=[images], max_tokens=256, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
156
+ result = tokenizer.decode(out_tokens[0])
157
+
158
+ print(result)
159
+ ```
160
+
161
+ ## Limitations
162
+
163
+ The Pixtral model does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
164
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
165
+
166
+ ## The Mistral AI Team
167
+
168
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Diogo Costa, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall