File size: 8,608 Bytes
2735865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
crop_size = (
    256,
    512,
)
data_preprocessor = dict(
    bgr_to_rgb=True,
    mean=[
        123.675,
        116.28,
        103.53,
    ],
    pad_val=0,
    seg_pad_val=255,
    size=(
        256,
        512,
    ),
    std=[
        58.395,
        57.12,
        57.375,
    ],
    type='SegDataPreProcessor')
data_root = '/dataset/cityscapes/'
dataset_type = 'CityscapesDataset'
default_hooks = dict(
    checkpoint=dict(by_epoch=False, interval=4000, type='CheckpointHook'),
    logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
    param_scheduler=dict(type='ParamSchedulerHook'),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    timer=dict(type='IterTimerHook'),
    visualization=dict(type='SegVisualizationHook'))
default_scope = 'mmseg'
env_cfg = dict(
    cudnn_benchmark=True,
    dist_cfg=dict(backend='nccl'),
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
img_ratios = [
    0.5,
    0.75,
    1.0,
    1.25,
    1.5,
    1.75,
]
launcher = 'pytorch'
load_from = 'work_dirs/fcn-hr48-4xb2-512x1024-80k/fcn-hr48-4xb2-512x1024-80k_ckpt.pth'
log_level = 'INFO'
log_processor = dict(by_epoch=False)
model = dict(
    backbone=dict(
        extra=dict(
            stage1=dict(
                block='BOTTLENECK',
                num_blocks=(4, ),
                num_branches=1,
                num_channels=(64, ),
                num_modules=1),
            stage2=dict(
                block='BASIC',
                num_blocks=(
                    4,
                    4,
                ),
                num_branches=2,
                num_channels=(
                    48,
                    96,
                ),
                num_modules=1),
            stage3=dict(
                block='BASIC',
                num_blocks=(
                    4,
                    4,
                    4,
                ),
                num_branches=3,
                num_channels=(
                    48,
                    96,
                    192,
                ),
                num_modules=4),
            stage4=dict(
                block='BASIC',
                num_blocks=(
                    4,
                    4,
                    4,
                    4,
                ),
                num_branches=4,
                num_channels=(
                    48,
                    96,
                    192,
                    384,
                ),
                num_modules=3)),
        norm_cfg=dict(requires_grad=True, type='SyncBN'),
        norm_eval=False,
        type='HRNet'),
    data_preprocessor=dict(
        bgr_to_rgb=True,
        mean=[
            123.675,
            116.28,
            103.53,
        ],
        pad_val=0,
        seg_pad_val=255,
        size=(
            256,
            512,
        ),
        std=[
            58.395,
            57.12,
            57.375,
        ],
        type='SegDataPreProcessor'),
    decode_head=dict(
        align_corners=False,
        channels=720,
        concat_input=False,
        dropout_ratio=-1,
        in_channels=[
            48,
            96,
            192,
            384,
        ],
        in_index=(
            0,
            1,
            2,
            3,
        ),
        input_transform='resize_concat',
        kernel_size=1,
        loss_decode=dict(
            loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
        norm_cfg=dict(requires_grad=True, type='SyncBN'),
        num_classes=19,
        num_convs=1,
        type='FCNHead'),
    pretrained='open-mmlab://msra/hrnetv2_w48',
    test_cfg=dict(mode='whole'),
    train_cfg=dict(),
    type='EncoderDecoder')
norm_cfg = dict(requires_grad=True, type='SyncBN')
optim_wrapper = dict(
    clip_grad=None,
    optimizer=dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005),
    type='OptimWrapper')
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
param_scheduler = [
    dict(
        begin=0,
        by_epoch=False,
        end=80000,
        eta_min=0.0001,
        power=0.9,
        type='PolyLR'),
]
resume = False
test_cfg = dict(type='TestLoop')
test_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_prefix=dict(
            img_path='leftImg8bit/val', seg_map_path='gtFine/val'),
        data_root='/dataset/cityscapes/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(keep_ratio=True, scale=(
                2048,
                1024,
            ), type='Resize'),
            dict(type='LoadAnnotations'),
            dict(type='PackSegInputs'),
        ],
        type='CityscapesDataset'),
    num_workers=4,
    persistent_workers=True,
    sampler=dict(shuffle=False, type='DefaultSampler'))
test_evaluator = dict(
    iou_metrics=[
        'mIoU',
    ], type='IoUMetric')
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(keep_ratio=True, scale=(
        2048,
        1024,
    ), type='Resize'),
    dict(type='LoadAnnotations'),
    dict(type='PackSegInputs'),
]
train_cfg = dict(max_iters=80000, type='IterBasedTrainLoop', val_interval=8000)
train_dataloader = dict(
    batch_size=2,
    dataset=dict(
        data_prefix=dict(
            img_path='leftImg8bit/train', seg_map_path='gtFine/train'),
        data_root='/dataset/cityscapes/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations'),
            dict(
                keep_ratio=True,
                ratio_range=(
                    0.5,
                    2.0,
                ),
                scale=(
                    2048,
                    1024,
                ),
                type='RandomResize'),
            dict(
                cat_max_ratio=0.75, crop_size=(
                    256,
                    512,
                ), type='RandomCrop'),
            dict(prob=0.5, type='RandomFlip'),
            dict(type='PhotoMetricDistortion'),
            dict(type='PackSegInputs'),
        ],
        type='CityscapesDataset'),
    num_workers=2,
    persistent_workers=True,
    sampler=dict(shuffle=True, type='InfiniteSampler'))
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(
        keep_ratio=True,
        ratio_range=(
            0.5,
            2.0,
        ),
        scale=(
            2048,
            1024,
        ),
        type='RandomResize'),
    dict(cat_max_ratio=0.75, crop_size=(
        256,
        512,
    ), type='RandomCrop'),
    dict(prob=0.5, type='RandomFlip'),
    dict(type='PhotoMetricDistortion'),
    dict(type='PackSegInputs'),
]
tta_model = dict(type='SegTTAModel')
tta_pipeline = [
    dict(backend_args=None, type='LoadImageFromFile'),
    dict(
        transforms=[
            [
                dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
                dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
                dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
                dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
                dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
                dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
            ],
            [
                dict(direction='horizontal', prob=0.0, type='RandomFlip'),
                dict(direction='horizontal', prob=1.0, type='RandomFlip'),
            ],
            [
                dict(type='LoadAnnotations'),
            ],
            [
                dict(type='PackSegInputs'),
            ],
        ],
        type='TestTimeAug'),
]
val_cfg = dict(type='ValLoop')
val_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_prefix=dict(
            img_path='leftImg8bit/val', seg_map_path='gtFine/val'),
        data_root='/dataset/cityscapes/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(keep_ratio=True, scale=(
                2048,
                1024,
            ), type='Resize'),
            dict(type='LoadAnnotations'),
            dict(type='PackSegInputs'),
        ],
        type='CityscapesDataset'),
    num_workers=4,
    persistent_workers=True,
    sampler=dict(shuffle=False, type='DefaultSampler'))
val_evaluator = dict(
    iou_metrics=[
        'mIoU',
    ], type='IoUMetric')
vis_backends = [
    dict(type='LocalVisBackend'),
]
visualizer = dict(
    name='visualizer',
    type='SegLocalVisualizer',
    vis_backends=[
        dict(type='LocalVisBackend'),
    ])
work_dir = './work_dirs/fcn-hr48-4xb2-512x1024-80k'