File size: 6,955 Bytes
7eb3676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#Original code can be found on: https://github.com/XLabs-AI/x-flux/blob/main/src/flux/controlnet.py

import torch
import math
from torch import Tensor, nn
from einops import rearrange, repeat

from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
                                 MLPEmbedder, SingleStreamBlock,
                                 timestep_embedding)

from .model import Flux
import comfy.ldm.common_dit


class ControlNetFlux(Flux):
    def __init__(self, latent_input=False, num_union_modes=0, image_model=None, dtype=None, device=None, operations=None, **kwargs):
        super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)

        self.main_model_double = 19
        self.main_model_single = 38
        # add ControlNet blocks
        self.controlnet_blocks = nn.ModuleList([])
        for _ in range(self.params.depth):
            controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
            self.controlnet_blocks.append(controlnet_block)

        self.controlnet_single_blocks = nn.ModuleList([])
        for _ in range(self.params.depth_single_blocks):
            self.controlnet_single_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device))

        self.num_union_modes = num_union_modes
        self.controlnet_mode_embedder = None
        if self.num_union_modes > 0:
            self.controlnet_mode_embedder = operations.Embedding(self.num_union_modes, self.hidden_size, dtype=dtype, device=device)

        self.gradient_checkpointing = False
        self.latent_input = latent_input
        self.pos_embed_input = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
        if not self.latent_input:
            self.input_hint_block = nn.Sequential(
                operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
            )

    def forward_orig(
        self,
        img: Tensor,
        img_ids: Tensor,
        controlnet_cond: Tensor,
        txt: Tensor,
        txt_ids: Tensor,
        timesteps: Tensor,
        y: Tensor,
        guidance: Tensor = None,
        control_type: Tensor = None,
    ) -> Tensor:
        if img.ndim != 3 or txt.ndim != 3:
            raise ValueError("Input img and txt tensors must have 3 dimensions.")

        # running on sequences img
        img = self.img_in(img)
        if not self.latent_input:
            controlnet_cond = self.input_hint_block(controlnet_cond)
            controlnet_cond = rearrange(controlnet_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)

        controlnet_cond = self.pos_embed_input(controlnet_cond)
        img = img + controlnet_cond
        vec = self.time_in(timestep_embedding(timesteps, 256))
        if self.params.guidance_embed:
            vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
        vec = vec + self.vector_in(y)
        txt = self.txt_in(txt)

        if self.controlnet_mode_embedder is not None and len(control_type) > 0:
            control_cond = self.controlnet_mode_embedder(torch.tensor(control_type, device=img.device), out_dtype=img.dtype).unsqueeze(0).repeat((txt.shape[0], 1, 1))
            txt = torch.cat([control_cond, txt], dim=1)
            txt_ids = torch.cat([txt_ids[:,:1], txt_ids], dim=1)

        ids = torch.cat((txt_ids, img_ids), dim=1)
        pe = self.pe_embedder(ids)

        controlnet_double = ()

        for i in range(len(self.double_blocks)):
            img, txt = self.double_blocks[i](img=img, txt=txt, vec=vec, pe=pe)
            controlnet_double = controlnet_double + (self.controlnet_blocks[i](img),)

        img = torch.cat((txt, img), 1)

        controlnet_single = ()

        for i in range(len(self.single_blocks)):
            img = self.single_blocks[i](img, vec=vec, pe=pe)
            controlnet_single = controlnet_single + (self.controlnet_single_blocks[i](img[:, txt.shape[1] :, ...]),)

        repeat = math.ceil(self.main_model_double / len(controlnet_double))
        if self.latent_input:
            out_input = ()
            for x in controlnet_double:
                    out_input += (x,) * repeat
        else:
            out_input = (controlnet_double * repeat)

        out = {"input": out_input[:self.main_model_double]}
        if len(controlnet_single) > 0:
            repeat = math.ceil(self.main_model_single / len(controlnet_single))
            out_output = ()
            if self.latent_input:
                for x in controlnet_single:
                        out_output += (x,) * repeat
            else:
                out_output = (controlnet_single * repeat)
            out["output"] = out_output[:self.main_model_single]
        return out

    def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
        patch_size = 2
        if self.latent_input:
            hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))
            hint = rearrange(hint, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
        else:
            hint = hint * 2.0 - 1.0

        bs, c, h, w = x.shape
        x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))

        img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)

        h_len = ((h + (patch_size // 2)) // patch_size)
        w_len = ((w + (patch_size // 2)) // patch_size)
        img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
        img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
        img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
        img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

        txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
        return self.forward_orig(img, img_ids, hint, context, txt_ids, timesteps, y, guidance, control_type=kwargs.get("control_type", []))