File size: 13,657 Bytes
7eb3676 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import torch
import warnings
from enum import IntEnum
from skimage import io
import numpy as np
from packaging import version
from tqdm import tqdm
import importlib
from .utils import *
from .folder_data import FolderData
class LandmarksType(IntEnum):
"""Enum class defining the type of landmarks to detect.
``TWO_D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
``TWO_HALF_D`` - this points represent the projection of the 3D points into 3D
``THREE_D`` - detect the points ``(x,y,z)``` in a 3D space
"""
TWO_D = 1
TWO_HALF_D = 2
THREE_D = 3
class NetworkSize(IntEnum):
# TINY = 1
# SMALL = 2
# MEDIUM = 3
LARGE = 4
default_model_urls = {
'2DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/2DFAN4-cd938726ad.zip',
'3DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/3DFAN4-4a694010b9.zip',
'depth': 'https://www.adrianbulat.com/downloads/python-fan/depth-6c4283c0e0.zip',
}
models_urls = {
'1.6': {
'2DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/2DFAN4_1.6-c827573f02.zip',
'3DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/3DFAN4_1.6-ec5cf40a1d.zip',
'depth': 'https://www.adrianbulat.com/downloads/python-fan/depth_1.6-2aa3f18772.zip',
},
'1.5': {
'2DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/2DFAN4_1.5-a60332318a.zip',
'3DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/3DFAN4_1.5-176570af4d.zip',
'depth': 'https://www.adrianbulat.com/downloads/python-fan/depth_1.5-bc10f98e39.zip',
},
}
class FaceAlignment:
def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
device='cuda', dtype=torch.float32, flip_input=False, face_detector='sfd', face_detector_kwargs=None, verbose=False):
self.device = device
self.flip_input = flip_input
self.landmarks_type = landmarks_type
self.verbose = verbose
self.dtype = dtype
if version.parse(torch.__version__) < version.parse('1.5.0'):
raise ImportError(f'Unsupported pytorch version detected. Minimum supported version of pytorch: 1.5.0\
Either upgrade (recommended) your pytorch setup, or downgrade to face-alignment 1.2.0')
network_size = int(network_size)
pytorch_version = torch.__version__
if 'dev' in pytorch_version:
pytorch_version = pytorch_version.rsplit('.', 2)[0]
else:
pytorch_version = pytorch_version.rsplit('.', 1)[0]
#if 'cuda' in device:
# torch.backends.cudnn.benchmark = True
# Get the face detector
package_directory_name = os.path.basename(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
face_detector_module = importlib.import_module('.face_alignment.detection.' + face_detector, package=package_directory_name)
face_detector_kwargs = face_detector_kwargs or {}
self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose, **face_detector_kwargs)
# Initialise the face alignemnt networks
if landmarks_type == LandmarksType.TWO_D:
network_name = '2DFAN-' + str(network_size)
else:
network_name = '3DFAN-' + str(network_size)
self.face_alignment_net = torch.jit.load(
load_file_from_url(models_urls.get(pytorch_version, default_model_urls)[network_name]))
self.face_alignment_net.to(device, dtype=dtype)
self.face_alignment_net.eval()
# Initialiase the depth prediciton network
if landmarks_type == LandmarksType.THREE_D:
self.depth_prediciton_net = torch.jit.load(
load_file_from_url(models_urls.get(pytorch_version, default_model_urls)['depth']))
self.depth_prediciton_net.to(device, dtype=dtype)
self.depth_prediciton_net.eval()
def get_landmarks(self, image_or_path, detected_faces=None, return_bboxes=False, return_landmark_score=False):
"""Deprecated, please use get_landmarks_from_image
Arguments:
image_or_path {string or numpy.array or torch.tensor} -- The input image or path to it
Keyword Arguments:
detected_faces {list of numpy.array} -- list of bounding boxes, one for each face found
in the image (default: {None})
return_bboxes {boolean} -- If True, return the face bounding boxes in addition to the keypoints.
return_landmark_score {boolean} -- If True, return the keypoint scores along with the keypoints.
"""
return self.get_landmarks_from_image(image_or_path, detected_faces, return_bboxes, return_landmark_score)
@torch.no_grad()
def get_landmarks_from_image(self, image_or_path, detected_faces=None, return_bboxes=False,
return_landmark_score=False):
"""Predict the landmarks for each face present in the image.
This function predicts a set of 68 2D or 3D images, one for each image present.
If detect_faces is None the method will also run a face detector.
Arguments:
image_or_path {string or numpy.array or torch.tensor} -- The input image or path to it.
Keyword Arguments:
detected_faces {list of numpy.array} -- list of bounding boxes, one for each face found
in the image (default: {None})
return_bboxes {boolean} -- If True, return the face bounding boxes in addition to the keypoints.
return_landmark_score {boolean} -- If True, return the keypoint scores along with the keypoints.
Return:
result:
1. if both return_bboxes and return_landmark_score are False, result will be:
landmark
2. Otherwise, result will be one of the following, depending on the actual value of return_* arguments.
(landmark, landmark_score, detected_face)
(landmark, None, detected_face)
(landmark, landmark_score, None )
"""
image = get_image(image_or_path)
if detected_faces is None:
detected_faces = self.face_detector.detect_from_image(image.copy())
if len(detected_faces) == 0:
warnings.warn("No faces were detected.")
if return_bboxes or return_landmark_score:
return None, None, None
else:
return None
landmarks = []
landmarks_scores = []
for i, d in enumerate(detected_faces):
center = torch.tensor(
[d[2] - (d[2] - d[0]) / 2.0, d[3] - (d[3] - d[1]) / 2.0])
center[1] = center[1] - (d[3] - d[1]) * 0.12
scale = (d[2] - d[0] + d[3] - d[1]) / self.face_detector.reference_scale
inp = crop(image, center, scale)
inp = torch.from_numpy(inp.transpose(
(2, 0, 1))).float()
inp = inp.to(self.device, dtype=self.dtype)
inp.div_(255.0).unsqueeze_(0)
out = self.face_alignment_net(inp).detach()
if self.flip_input:
out += flip(self.face_alignment_net(flip(inp)).detach(), is_label=True)
out = out.to(device='cpu', dtype=torch.float32).numpy()
pts, pts_img, scores = get_preds_fromhm(out, center.numpy(), scale)
pts, pts_img = torch.from_numpy(pts), torch.from_numpy(pts_img)
pts, pts_img = pts.view(68, 2) * 4, pts_img.view(68, 2)
scores = scores.squeeze(0)
if self.landmarks_type == LandmarksType.THREE_D:
heatmaps = np.zeros((68, 256, 256), dtype=np.float32)
for i in range(68):
if pts[i, 0] > 0 and pts[i, 1] > 0:
heatmaps[i] = draw_gaussian(
heatmaps[i], pts[i], 2)
heatmaps = torch.from_numpy(
heatmaps).unsqueeze_(0)
heatmaps = heatmaps.to(self.device, dtype=self.dtype)
depth_pred = self.depth_prediciton_net(
torch.cat((inp, heatmaps), 1)).data.cpu().view(68, 1).to(dtype=torch.float32)
pts_img = torch.cat(
(pts_img, depth_pred * (1.0 / (256.0 / (200.0 * scale)))), 1)
landmarks.append(pts_img.numpy())
landmarks_scores.append(scores)
if not return_bboxes:
detected_faces = None
if not return_landmark_score:
landmarks_scores = None
if return_bboxes or return_landmark_score:
return landmarks, landmarks_scores, detected_faces
else:
return landmarks
@torch.no_grad()
def get_landmarks_from_batch(self, image_batch, detected_faces=None, return_bboxes=False,
return_landmark_score=False):
"""Predict the landmarks for each face present in the image.
This function predicts a set of 68 2D or 3D images, one for each image in a batch in parallel.
If detect_faces is None the method will also run a face detector.
Arguments:
image_batch {torch.tensor} -- The input images batch
Keyword Arguments:
detected_faces {list of numpy.array} -- list of bounding boxes, one for each face found
in the image (default: {None})
return_bboxes {boolean} -- If True, return the face bounding boxes in addition to the keypoints.
return_landmark_score {boolean} -- If True, return the keypoint scores along with the keypoints.
Return:
result:
1. if both return_bboxes and return_landmark_score are False, result will be:
landmarks
2. Otherwise, result will be one of the following, depending on the actual value of return_* arguments.
(landmark, landmark_score, detected_face)
(landmark, None, detected_face)
(landmark, landmark_score, None )
"""
if detected_faces is None:
detected_faces = self.face_detector.detect_from_batch(image_batch)
if len(detected_faces) == 0:
warnings.warn("No faces were detected.")
if return_bboxes or return_landmark_score:
return None, None, None
else:
return None
landmarks = []
landmarks_scores_list = []
# A batch for each frame
for i, faces in enumerate(detected_faces):
res = self.get_landmarks_from_image(
image_batch[i].cpu().numpy().transpose(1, 2, 0),
detected_faces=faces,
return_landmark_score=return_landmark_score,
)
if return_landmark_score:
landmark_set, landmarks_scores, _ = res
landmarks_scores_list.append(landmarks_scores)
else:
landmark_set = res
# Bacward compatibility
if landmark_set is not None:
landmark_set = np.concatenate(landmark_set, axis=0)
else:
landmark_set = []
landmarks.append(landmark_set)
if not return_bboxes:
detected_faces = None
if not return_landmark_score:
landmarks_scores_list = None
if return_bboxes or return_landmark_score:
return landmarks, landmarks_scores_list, detected_faces
else:
return landmarks
def get_landmarks_from_directory(self, path, extensions=['.jpg', '.png'], recursive=True, show_progress_bar=True,
return_bboxes=False, return_landmark_score=False):
"""Scan a directory for images with a given extension type(s) and predict the landmarks for each
face present in the images found.
Arguments:
path {str} -- path to the target directory containing the images
Keyword Arguments:
extensions {list of str} -- list containing the image extensions considered (default: ['.jpg', '.png'])
recursive {boolean} -- If True, scans for images recursively (default: True)
show_progress_bar {boolean} -- If True displays a progress bar (default: True)
return_bboxes {boolean} -- If True, return the face bounding boxes in addition to the keypoints.
return_landmark_score {boolean} -- If True, return the keypoint scores along with the keypoints.
"""
dataset = FolderData(path, self.face_detector.tensor_or_path_to_ndarray, extensions, recursive, self.verbose)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=2, prefetch_factor=4)
predictions = {}
for (image_path, image) in tqdm(dataloader, disable=not show_progress_bar):
image_path, image = image_path[0], image[0]
bounding_boxes = self.face_detector.detect_from_image(image)
if return_bboxes or return_landmark_score:
preds, bbox, score = self.get_landmarks_from_image(
image, bounding_boxes, return_bboxes=return_bboxes, return_landmark_score=return_landmark_score)
predictions[image_path] = (preds, bbox, score)
else:
preds = self.get_landmarks_from_image(image, bounding_boxes)
predictions[image_path] = preds
return predictions
|