File size: 13,530 Bytes
7eb3676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import os
import sys
import errno
import torch
import math
import numpy as np
import cv2
from skimage import io
from skimage import color
from numba import jit

from urllib.parse import urlparse
from torch.hub import download_url_to_file, HASH_REGEX
try:
    from torch.hub import get_dir
except BaseException:
    from torch.hub import _get_torch_home as get_dir

gauss_kernel = None


def _gaussian(
        size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
        height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
        mean_vert=0.5):
    # handle some defaults
    if width is None:
        width = size
    if height is None:
        height = size
    if sigma_horz is None:
        sigma_horz = sigma
    if sigma_vert is None:
        sigma_vert = sigma
    center_x = mean_horz * width + 0.5
    center_y = mean_vert * height + 0.5
    gauss = np.empty((height, width), dtype=np.float32)
    # generate kernel
    for i in range(height):
        for j in range(width):
            gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
                sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
    if normalize:
        gauss = gauss / np.sum(gauss)
    return gauss


def draw_gaussian(image, point, sigma):
    global gauss_kernel
    # Check if the gaussian is inside
    ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)]
    br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)]
    if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1):
        return image
    size = 6 * sigma + 1
    if gauss_kernel is None:
        g = _gaussian(size)
        gauss_kernel = g
    else:
        g = gauss_kernel
    g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
    g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
    img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
    img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
    assert (g_x[0] > 0 and g_y[1] > 0)
    image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
          ] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
    image[image > 1] = 1
    return image


def transform(point, center, scale, resolution, invert=False):
    """Generate and affine transformation matrix.

    Given a set of points, a center, a scale and a targer resolution, the
    function generates and affine transformation matrix. If invert is ``True``
    it will produce the inverse transformation.

    Arguments:
        point {torch.tensor} -- the input 2D point
        center {torch.tensor or numpy.array} -- the center around which to perform the transformations
        scale {float} -- the scale of the face/object
        resolution {float} -- the output resolution

    Keyword Arguments:
        invert {bool} -- define wherever the function should produce the direct or the
        inverse transformation matrix (default: {False})
    """
    _pt = torch.ones(3)
    _pt[0] = point[0]
    _pt[1] = point[1]

    h = 200.0 * scale
    t = torch.eye(3)
    t[0, 0] = resolution / h
    t[1, 1] = resolution / h
    t[0, 2] = resolution * (-center[0] / h + 0.5)
    t[1, 2] = resolution * (-center[1] / h + 0.5)

    if invert:
        t = torch.inverse(t)

    new_point = (torch.matmul(t, _pt))[0:2]

    return new_point.int()


def crop(image, center, scale, resolution=256.0):
    """Center crops an image or set of heatmaps

    Arguments:
        image {numpy.array} -- an rgb image
        center {numpy.array} -- the center of the object, usually the same as of the bounding box
        scale {float} -- scale of the face

    Keyword Arguments:
        resolution {float} -- the size of the output cropped image (default: {256.0})

    Returns:
        [type] -- [description]
    """  # Crop around the center point
    """ Crops the image around the center. Input is expected to be an np.ndarray """
    ul = transform([1, 1], center, scale, resolution, True)
    br = transform([resolution, resolution], center, scale, resolution, True)
    # pad = math.ceil(torch.norm((ul - br).float()) / 2.0 - (br[0] - ul[0]) / 2.0)
    if image.ndim > 2:
        newDim = np.array([br[1] - ul[1], br[0] - ul[0],
                           image.shape[2]], dtype=np.int32)
        newImg = np.zeros(newDim, dtype=np.uint8)
    else:
        newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
        newImg = np.zeros(newDim, dtype=np.uint8)
    ht = image.shape[0]
    wd = image.shape[1]
    newX = np.array(
        [max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
    newY = np.array(
        [max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
    oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
    oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
    newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1]
           ] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
    newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)),
                        interpolation=cv2.INTER_LINEAR)
    return newImg


@jit(nopython=True)
def transform_np(point, center, scale, resolution, invert=False):
    """Generate and affine transformation matrix.

    Given a set of points, a center, a scale and a targer resolution, the
    function generates and affine transformation matrix. If invert is ``True``
    it will produce the inverse transformation.

    Arguments:
        point {numpy.array} -- the input 2D point
        center {numpy.array} -- the center around which to perform the transformations
        scale {float} -- the scale of the face/object
        resolution {float} -- the output resolution

    Keyword Arguments:
        invert {bool} -- define wherever the function should produce the direct or the
        inverse transformation matrix (default: {False})
    """
    _pt = np.ones(3)
    _pt[0] = point[0]
    _pt[1] = point[1]

    h = 200.0 * scale
    t = np.eye(3)
    t[0, 0] = resolution / h
    t[1, 1] = resolution / h
    t[0, 2] = resolution * (-center[0] / h + 0.5)
    t[1, 2] = resolution * (-center[1] / h + 0.5)

    if invert:
        t = np.ascontiguousarray(np.linalg.pinv(t))

    new_point = np.dot(t, _pt)[0:2]

    return new_point.astype(np.int32)


def get_preds_fromhm(hm, center=None, scale=None):
    """Obtain (x,y) coordinates given a set of N heatmaps. If the center
    and the scale is provided the function will return the points also in
    the original coordinate frame.

    Arguments:
        hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]

    Keyword Arguments:
        center {torch.tensor} -- the center of the bounding box (default: {None})
        scale {float} -- face scale (default: {None})
    """
    B, C, H, W = hm.shape
    hm_reshape = hm.reshape(B, C, H * W)
    idx = np.argmax(hm_reshape, axis=-1)
    scores = np.take_along_axis(hm_reshape, np.expand_dims(idx, axis=-1), axis=-1).squeeze(-1)
    preds, preds_orig = _get_preds_fromhm(hm, idx, center, scale)

    return preds, preds_orig, scores


@jit(nopython=True)
def _get_preds_fromhm(hm, idx, center=None, scale=None):
    """Obtain (x,y) coordinates given a set of N heatmaps and the
    coresponding locations of the maximums. If the center
    and the scale is provided the function will return the points also in
    the original coordinate frame.

    Arguments:
        hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]

    Keyword Arguments:
        center {torch.tensor} -- the center of the bounding box (default: {None})
        scale {float} -- face scale (default: {None})
    """
    B, C, H, W = hm.shape
    idx += 1
    preds = idx.repeat(2).reshape(B, C, 2).astype(np.float32)
    preds[:, :, 0] = (preds[:, :, 0] - 1) % W + 1
    preds[:, :, 1] = np.floor((preds[:, :, 1] - 1) / H) + 1

    for i in range(B):
        for j in range(C):
            hm_ = hm[i, j, :]
            pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
            if pX > 0 and pX < 63 and pY > 0 and pY < 63:
                diff = np.array(
                    [hm_[pY, pX + 1] - hm_[pY, pX - 1],
                     hm_[pY + 1, pX] - hm_[pY - 1, pX]])
                preds[i, j] += np.sign(diff) * 0.25

    preds -= 0.5

    preds_orig = np.zeros_like(preds)
    if center is not None and scale is not None:
        for i in range(B):
            for j in range(C):
                preds_orig[i, j] = transform_np(
                    preds[i, j], center, scale, H, True)

    return preds, preds_orig


def create_target_heatmap(target_landmarks, centers, scales):
    heatmaps = np.zeros((target_landmarks.shape[0], 68, 64, 64), dtype=np.float32)
    for i in range(heatmaps.shape[0]):
        for p in range(68):
            landmark_cropped_coor = transform(target_landmarks[i, p] + 1, centers[i], scales[i], 64, invert=False)
            heatmaps[i, p] = draw_gaussian(heatmaps[i, p], landmark_cropped_coor + 1, 2)
    return torch.tensor(heatmaps)


def create_bounding_box(target_landmarks, expansion_factor=0.0):
    """
    gets a batch of landmarks and calculates a bounding box that includes all the landmarks per set of landmarks in
    the batch
    :param target_landmarks: batch of landmarks of dim (n x 68 x 2). Where n is the batch size
    :param expansion_factor: expands the bounding box by this factor. For example, a `expansion_factor` of 0.2 leads
    to 20% increase in width and height of the boxes
    :return: a batch of bounding boxes of dim (n x 4) where the second dim is (x1,y1,x2,y2)
    """
    # Calc bounding box
    x_y_min, _ = target_landmarks.reshape(-1, 68, 2).min(dim=1)
    x_y_max, _ = target_landmarks.reshape(-1, 68, 2).max(dim=1)
    # expanding the bounding box
    expansion_factor /= 2
    bb_expansion_x = (x_y_max[:, 0] - x_y_min[:, 0]) * expansion_factor
    bb_expansion_y = (x_y_max[:, 1] - x_y_min[:, 1]) * expansion_factor
    x_y_min[:, 0] -= bb_expansion_x
    x_y_max[:, 0] += bb_expansion_x
    x_y_min[:, 1] -= bb_expansion_y
    x_y_max[:, 1] += bb_expansion_y
    return torch.cat([x_y_min, x_y_max], dim=1)


def shuffle_lr(parts, pairs=None):
    """Shuffle the points left-right according to the axis of symmetry
    of the object.

    Arguments:
        parts {torch.tensor} -- a 3D or 4D object containing the
        heatmaps.

    Keyword Arguments:
        pairs {list of integers} -- [order of the flipped points] (default: {None})
    """
    if pairs is None:
        pairs = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
                 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35,
                 34, 33, 32, 31, 45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41,
                 40, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 55, 64, 63,
                 62, 61, 60, 67, 66, 65]
    if parts.ndimension() == 3:
        parts = parts[pairs, ...]
    else:
        parts = parts[:, pairs, ...]

    return parts


def flip(tensor, is_label=False):
    """Flip an image or a set of heatmaps left-right

    Arguments:
        tensor {numpy.array or torch.tensor} -- [the input image or heatmaps]

    Keyword Arguments:
        is_label {bool} -- [denote wherever the input is an image or a set of heatmaps ] (default: {False})
    """
    if not torch.is_tensor(tensor):
        tensor = torch.from_numpy(tensor)

    if is_label:
        tensor = shuffle_lr(tensor).flip(tensor.ndimension() - 1)
    else:
        tensor = tensor.flip(tensor.ndimension() - 1)

    return tensor


def get_image(image_or_path):
    """Reads an image from file or array/tensor and converts it to RGB (H,W,3).

    Arguments:
        tensor {Sstring, numpy.array or torch.tensor} -- [the input image or path to it]
    """
    if isinstance(image_or_path, str):
        try:
            image = io.imread(image_or_path)
        except IOError:
            print("error opening file :: ", image_or_path)
            return None
    elif isinstance(image_or_path, torch.Tensor):
        image = image_or_path.detach().cpu().numpy()
    else:
        image = image_or_path

    if image.ndim == 2:
        image = color.gray2rgb(image)
    elif image.ndim == 4:
        image = image[..., :3]

    return image


# Pytorch load supports only pytorch models
def load_file_from_url(url, model_dir=None, progress=True, check_hash=False, file_name=None):
    if model_dir is None:
        hub_dir = get_dir()
        model_dir = os.path.join(hub_dir, 'checkpoints')

    try:
        os.makedirs(model_dir)
    except OSError as e:
        if e.errno == errno.EEXIST:
            # Directory already exists, ignore.
            pass
        else:
            # Unexpected OSError, re-raise.
            raise

    parts = urlparse(url)
    filename = os.path.basename(parts.path)
    if file_name is not None:
        filename = file_name
    cached_file = os.path.join(model_dir, filename)
    if not os.path.exists(cached_file):
        sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
        hash_prefix = None
        if check_hash:
            r = HASH_REGEX.search(filename)  # r is Optional[Match[str]]
            hash_prefix = r.group(1) if r else None
        download_url_to_file(url, cached_file, hash_prefix, progress=progress)

    return cached_file