File size: 8,120 Bytes
7eb3676 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
import hashlib
import numpy as np
import torch
from PIL import Image, ImageOps
import itertools
import folder_paths
from comfy.k_diffusion.utils import FolderOfImages
from comfy.utils import common_upscale, ProgressBar
from .logger import logger
from .utils import BIGMAX, calculate_file_hash, get_sorted_dir_files_from_directory, validate_path, strip_path
def is_changed_load_images(directory: str, image_load_cap: int = 0, skip_first_images: int = 0, select_every_nth: int = 1, **kwargs):
if not os.path.isdir(directory):
return False
dir_files = get_sorted_dir_files_from_directory(directory, skip_first_images, select_every_nth, FolderOfImages.IMG_EXTENSIONS)
if image_load_cap != 0:
dir_files = dir_files[:image_load_cap]
m = hashlib.sha256()
for filepath in dir_files:
m.update(calculate_file_hash(filepath).encode()) # strings must be encoded before hashing
return m.digest().hex()
def validate_load_images(directory: str):
if not os.path.isdir(directory):
return f"Directory '{directory}' cannot be found."
dir_files = os.listdir(directory)
if len(dir_files) == 0:
return f"No files in directory '{directory}'."
return True
def images_generator(directory: str, image_load_cap: int = 0, skip_first_images: int = 0, select_every_nth: int = 1, meta_batch=None, unique_id=None):
if not os.path.isdir(directory):
raise FileNotFoundError(f"Directory '{directory} cannot be found.")
dir_files = get_sorted_dir_files_from_directory(directory, skip_first_images, select_every_nth, FolderOfImages.IMG_EXTENSIONS)
if len(dir_files) == 0:
raise FileNotFoundError(f"No files in directory '{directory}'.")
if image_load_cap > 0:
dir_files = dir_files[:image_load_cap]
sizes = {}
has_alpha = False
for image_path in dir_files:
i = Image.open(image_path)
#exif_transpose can only ever rotate, but rotating can swap width/height
i = ImageOps.exif_transpose(i)
has_alpha |= 'A' in i.getbands()
count = sizes.get(i.size, 0)
sizes[i.size] = count +1
size = max(sizes.items(), key=lambda x: x[1])[0]
yield size[0], size[1], has_alpha
if meta_batch is not None:
yield min(image_load_cap, len(dir_files)) or len(dir_files)
iformat = "RGBA" if has_alpha else "RGB"
def load_image(file_path):
i = Image.open(file_path)
i = ImageOps.exif_transpose(i)
i = i.convert(iformat)
i = np.array(i, dtype=np.float32)
#This nonsense provides a nearly 50% speedup on my system
torch.from_numpy(i).div_(255)
if i.shape[0] != size[1] or i.shape[1] != size[0]:
i = torch.from_numpy(i).movedim(-1, 0).unsqueeze(0)
i = common_upscale(i, size[0], size[1], "lanczos", "center")
i = i.squeeze(0).movedim(0, -1).numpy()
if has_alpha:
i[:,:,-1] = 1 - i[:,:,-1]
return i
total_images = len(dir_files)
processed_images = 0
pbar = ProgressBar(total_images)
images = map(load_image, dir_files)
try:
prev_image = next(images)
while True:
next_image = next(images)
yield prev_image
processed_images += 1
pbar.update_absolute(processed_images, total_images)
prev_image = next_image
except StopIteration:
pass
if meta_batch is not None:
meta_batch.inputs.pop(unique_id)
meta_batch.has_closed_inputs = True
if prev_image is not None:
yield prev_image
def load_images(directory: str, image_load_cap: int = 0, skip_first_images: int = 0, select_every_nth: int = 1, meta_batch=None, unique_id=None):
if meta_batch is None or unique_id not in meta_batch.inputs:
gen = images_generator(directory, image_load_cap, skip_first_images, select_every_nth, meta_batch, unique_id)
(width, height, has_alpha) = next(gen)
if meta_batch is not None:
meta_batch.inputs[unique_id] = (gen, width, height, has_alpha)
meta_batch.total_frames = min(meta_batch.total_frames, next(gen))
else:
gen, width, height, has_alpha = meta_batch.inputs[unique_id]
if meta_batch is not None:
gen = itertools.islice(gen, meta_batch.frames_per_batch)
images = torch.from_numpy(np.fromiter(gen, np.dtype((np.float32, (height, width, 3 + has_alpha)))))
if has_alpha:
#tensors are not continuous. Rewrite will be required if this is an issue
masks = images[:,:,:,3]
images = images[:,:,:,:3]
else:
masks = torch.zeros((images.size(0), 64, 64), dtype=torch.float32, device="cpu")
if len(images) == 0:
raise FileNotFoundError(f"No images could be loaded from directory '{directory}'.")
return images, masks, images.size(0)
class LoadImagesFromDirectoryUpload:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
directories = []
for item in os.listdir(input_dir):
if not os.path.isfile(os.path.join(input_dir, item)) and item != "clipspace":
directories.append(item)
return {
"required": {
"directory": (directories,),
},
"optional": {
"image_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"skip_first_images": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}),
"meta_batch": ("VHS_BatchManager",),
},
"hidden": {
"unique_id": "UNIQUE_ID"
},
}
RETURN_TYPES = ("IMAGE", "MASK", "INT")
RETURN_NAMES = ("IMAGE", "MASK", "frame_count")
FUNCTION = "load_images"
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
def load_images(self, directory: str, **kwargs):
directory = folder_paths.get_annotated_filepath(strip_path(directory))
return load_images(directory, **kwargs)
@classmethod
def IS_CHANGED(s, directory: str, **kwargs):
directory = folder_paths.get_annotated_filepath(strip_path(directory))
return is_changed_load_images(directory, **kwargs)
@classmethod
def VALIDATE_INPUTS(s, directory: str, **kwargs):
directory = folder_paths.get_annotated_filepath(strip_path(directory))
return validate_load_images(directory)
class LoadImagesFromDirectoryPath:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"directory": ("STRING", {"placeholder": "X://path/to/images", "vhs_path_extensions": []}),
},
"optional": {
"image_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"skip_first_images": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}),
"meta_batch": ("VHS_BatchManager",),
},
"hidden": {
"unique_id": "UNIQUE_ID"
},
}
RETURN_TYPES = ("IMAGE", "MASK", "INT")
RETURN_NAMES = ("IMAGE", "MASK", "frame_count")
FUNCTION = "load_images"
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
def load_images(self, directory: str, **kwargs):
directory = strip_path(directory)
if directory is None or validate_load_images(directory) != True:
raise Exception("directory is not valid: " + directory)
return load_images(directory, **kwargs)
@classmethod
def IS_CHANGED(s, directory: str, **kwargs):
if directory is None:
return "input"
return is_changed_load_images(directory, **kwargs)
@classmethod
def VALIDATE_INPUTS(s, directory: str, **kwargs):
if directory is None:
return True
return validate_load_images(strip_path(directory))
|