File size: 42,267 Bytes
7eb3676 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
import os
import sys
import json
import subprocess
import numpy as np
import re
import datetime
from typing import List
import torch
from PIL import Image, ExifTags
from PIL.PngImagePlugin import PngInfo
from pathlib import Path
from string import Template
import itertools
import functools
import folder_paths
from .logger import logger
from .image_latent_nodes import *
from .load_video_nodes import LoadVideoUpload, LoadVideoPath
from .load_images_nodes import LoadImagesFromDirectoryUpload, LoadImagesFromDirectoryPath
from .batched_nodes import VAEEncodeBatched, VAEDecodeBatched
from .utils import ffmpeg_path, get_audio, hash_path, validate_path, requeue_workflow, gifski_path, calculate_file_hash, strip_path, try_download_video, is_url, imageOrLatent
from comfy.utils import ProgressBar
folder_paths.folder_names_and_paths["VHS_video_formats"] = (
[
os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "video_formats"),
],
[".json"]
)
audio_extensions = ['mp3', 'mp4', 'wav', 'ogg']
def gen_format_widgets(video_format):
for k in video_format:
if k.endswith("_pass"):
for i in range(len(video_format[k])):
if isinstance(video_format[k][i], list):
item = [video_format[k][i]]
yield item
video_format[k][i] = item[0]
else:
if isinstance(video_format[k], list):
item = [video_format[k]]
yield item
video_format[k] = item[0]
def get_video_formats():
formats = []
for format_name in folder_paths.get_filename_list("VHS_video_formats"):
format_name = format_name[:-5]
video_format_path = folder_paths.get_full_path("VHS_video_formats", format_name + ".json")
with open(video_format_path, 'r') as stream:
video_format = json.load(stream)
if "gifski_pass" in video_format and gifski_path is None:
#Skip format
continue
widgets = [w[0] for w in gen_format_widgets(video_format)]
if (len(widgets) > 0):
formats.append(["video/" + format_name, widgets])
else:
formats.append("video/" + format_name)
return formats
def get_format_widget_defaults(format_name):
video_format_path = folder_paths.get_full_path("VHS_video_formats", format_name + ".json")
with open(video_format_path, 'r') as stream:
video_format = json.load(stream)
results = {}
for w in gen_format_widgets(video_format):
if len(w[0]) > 2 and 'default' in w[0][2]:
default = w[0][2]['default']
else:
if type(w[0][1]) is list:
default = w[0][1][0]
else:
#NOTE: This doesn't respect max/min, but should be good enough as a fallback to a fallback to a fallback
default = {"BOOLEAN": False, "INT": 0, "FLOAT": 0, "STRING": ""}[w[0][1]]
results[w[0][0]] = default
return results
def apply_format_widgets(format_name, kwargs):
video_format_path = folder_paths.get_full_path("VHS_video_formats", format_name + ".json")
with open(video_format_path, 'r') as stream:
video_format = json.load(stream)
for w in gen_format_widgets(video_format):
assert(w[0][0] in kwargs)
if len(w[0]) > 3:
w[0] = Template(w[0][3]).substitute(val=kwargs[w[0][0]])
else:
w[0] = str(kwargs[w[0][0]])
return video_format
def tensor_to_int(tensor, bits):
#TODO: investigate benefit of rounding by adding 0.5 before clip/cast
tensor = tensor.cpu().numpy() * (2**bits-1)
return np.clip(tensor, 0, (2**bits-1))
def tensor_to_shorts(tensor):
return tensor_to_int(tensor, 16).astype(np.uint16)
def tensor_to_bytes(tensor):
return tensor_to_int(tensor, 8).astype(np.uint8)
def ffmpeg_process(args, video_format, video_metadata, file_path, env):
res = None
frame_data = yield
total_frames_output = 0
if video_format.get('save_metadata', 'False') != 'False':
os.makedirs(folder_paths.get_temp_directory(), exist_ok=True)
metadata = json.dumps(video_metadata)
metadata_path = os.path.join(folder_paths.get_temp_directory(), "metadata.txt")
#metadata from file should escape = ; # \ and newline
metadata = metadata.replace("\\","\\\\")
metadata = metadata.replace(";","\\;")
metadata = metadata.replace("#","\\#")
metadata = metadata.replace("=","\\=")
metadata = metadata.replace("\n","\\\n")
metadata = "comment=" + metadata
with open(metadata_path, "w") as f:
f.write(";FFMETADATA1\n")
f.write(metadata)
m_args = args[:1] + ["-i", metadata_path] + args[1:] + ["-metadata", "creation_time=now"]
with subprocess.Popen(m_args + [file_path], stderr=subprocess.PIPE,
stdin=subprocess.PIPE, env=env) as proc:
try:
while frame_data is not None:
proc.stdin.write(frame_data)
#TODO: skip flush for increased speed
frame_data = yield
total_frames_output+=1
proc.stdin.flush()
proc.stdin.close()
res = proc.stderr.read()
except BrokenPipeError as e:
err = proc.stderr.read()
#Check if output file exists. If it does, the re-execution
#will also fail. This obscures the cause of the error
#and seems to never occur concurrent to the metadata issue
if os.path.exists(file_path):
raise Exception("An error occurred in the ffmpeg subprocess:\n" \
+ err.decode("utf-8"))
#Res was not set
print(err.decode("utf-8"), end="", file=sys.stderr)
logger.warn("An error occurred when saving with metadata")
if res != b'':
with subprocess.Popen(args + [file_path], stderr=subprocess.PIPE,
stdin=subprocess.PIPE, env=env) as proc:
try:
while frame_data is not None:
proc.stdin.write(frame_data)
frame_data = yield
total_frames_output+=1
proc.stdin.flush()
proc.stdin.close()
res = proc.stderr.read()
except BrokenPipeError as e:
res = proc.stderr.read()
raise Exception("An error occurred in the ffmpeg subprocess:\n" \
+ res.decode("utf-8"))
yield total_frames_output
if len(res) > 0:
print(res.decode("utf-8"), end="", file=sys.stderr)
def gifski_process(args, video_format, file_path, env):
frame_data = yield
with subprocess.Popen(args + video_format['main_pass'] + ['-f', 'yuv4mpegpipe', '-'],
stderr=subprocess.PIPE, stdin=subprocess.PIPE,
stdout=subprocess.PIPE, env=env) as procff:
with subprocess.Popen([gifski_path] + video_format['gifski_pass']
+ ['-q', '-o', file_path, '-'], stderr=subprocess.PIPE,
stdin=procff.stdout, stdout=subprocess.PIPE,
env=env) as procgs:
try:
while frame_data is not None:
procff.stdin.write(frame_data)
frame_data = yield
procff.stdin.flush()
procff.stdin.close()
resff = procff.stderr.read()
resgs = procgs.stderr.read()
outgs = procgs.stdout.read()
except BrokenPipeError as e:
procff.stdin.close()
resff = procff.stderr.read()
resgs = procgs.stderr.read()
raise Exception("An error occurred while creating gifski output\n" \
+ "Make sure you are using gifski --version >=1.32.0\nffmpeg: " \
+ resff.decode("utf-8") + '\ngifski: ' + resgs.decode("utf-8"))
if len(resff) > 0:
print(resff.decode("utf-8"), end="", file=sys.stderr)
if len(resgs) > 0:
print(resgs.decode("utf-8"), end="", file=sys.stderr)
#should always be empty as the quiet flag is passed
if len(outgs) > 0:
print(outgs.decode("utf-8"))
def to_pingpong(inp):
if not hasattr(inp, "__getitem__"):
inp = list(inp)
yield from inp
for i in range(len(inp)-2,0,-1):
yield inp[i]
class VideoCombine:
@classmethod
def INPUT_TYPES(s):
ffmpeg_formats = get_video_formats()
return {
"required": {
"images": (imageOrLatent,),
"frame_rate": (
"FLOAT",
{"default": 8, "min": 1, "step": 1},
),
"loop_count": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1}),
"filename_prefix": ("STRING", {"default": "AnimateDiff"}),
"format": (["image/gif", "image/webp"] + ffmpeg_formats,),
"pingpong": ("BOOLEAN", {"default": False}),
"save_output": ("BOOLEAN", {"default": True}),
},
"optional": {
"audio": ("AUDIO",),
"meta_batch": ("VHS_BatchManager",),
"vae": ("VAE",),
},
"hidden": {
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO",
"unique_id": "UNIQUE_ID"
},
}
RETURN_TYPES = ("VHS_FILENAMES",)
RETURN_NAMES = ("Filenames",)
OUTPUT_NODE = True
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
FUNCTION = "combine_video"
def combine_video(
self,
frame_rate: int,
loop_count: int,
images=None,
latents=None,
filename_prefix="AnimateDiff",
format="image/gif",
pingpong=False,
save_output=True,
prompt=None,
extra_pnginfo=None,
audio=None,
unique_id=None,
manual_format_widgets=None,
meta_batch=None,
vae=None
):
if latents is not None:
images = latents
if images is None:
return ((save_output, []),)
if vae is not None:
if isinstance(images, dict):
images = images['samples']
else:
vae = None
if isinstance(images, torch.Tensor) and images.size(0) == 0:
return ((save_output, []),)
num_frames = len(images)
pbar = ProgressBar(num_frames)
if vae is not None:
downscale_ratio = getattr(vae, "downscale_ratio", 8)
width = images.size(3)*downscale_ratio
height = images.size(2)*downscale_ratio
frames_per_batch = (1920 * 1080 * 16) // (width * height) or 1
#Python 3.12 adds an itertools.batched, but it's easily replicated for legacy support
def batched(it, n):
while batch := tuple(itertools.islice(it, n)):
yield batch
def batched_encode(images, vae, frames_per_batch):
for batch in batched(iter(images), frames_per_batch):
image_batch = torch.from_numpy(np.array(batch))
yield from vae.decode(image_batch)
images = batched_encode(images, vae, frames_per_batch)
first_image = next(images)
#repush first_image
images = itertools.chain([first_image], images)
else:
first_image = images[0]
images = iter(images)
# get output information
output_dir = (
folder_paths.get_output_directory()
if save_output
else folder_paths.get_temp_directory()
)
(
full_output_folder,
filename,
_,
subfolder,
_,
) = folder_paths.get_save_image_path(filename_prefix, output_dir)
output_files = []
metadata = PngInfo()
video_metadata = {}
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
video_metadata["prompt"] = json.dumps(prompt)
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
video_metadata[x] = extra_pnginfo[x]
metadata.add_text("CreationTime", datetime.datetime.now().isoformat(" ")[:19])
if meta_batch is not None and unique_id in meta_batch.outputs:
(counter, output_process) = meta_batch.outputs[unique_id]
else:
# comfy counter workaround
max_counter = 0
# Loop through the existing files
matcher = re.compile(f"{re.escape(filename)}_(\\d+)\\D*\\..+", re.IGNORECASE)
for existing_file in os.listdir(full_output_folder):
# Check if the file matches the expected format
match = matcher.fullmatch(existing_file)
if match:
# Extract the numeric portion of the filename
file_counter = int(match.group(1))
# Update the maximum counter value if necessary
if file_counter > max_counter:
max_counter = file_counter
# Increment the counter by 1 to get the next available value
counter = max_counter + 1
output_process = None
# save first frame as png to keep metadata
file = f"{filename}_{counter:05}.png"
file_path = os.path.join(full_output_folder, file)
Image.fromarray(tensor_to_bytes(first_image)).save(
file_path,
pnginfo=metadata,
compress_level=4,
)
output_files.append(file_path)
format_type, format_ext = format.split("/")
if format_type == "image":
if meta_batch is not None:
raise Exception("Pillow('image/') formats are not compatible with batched output")
image_kwargs = {}
if format_ext == "gif":
image_kwargs['disposal'] = 2
if format_ext == "webp":
#Save timestamp information
exif = Image.Exif()
exif[ExifTags.IFD.Exif] = {36867: datetime.datetime.now().isoformat(" ")[:19]}
image_kwargs['exif'] = exif
file = f"{filename}_{counter:05}.{format_ext}"
file_path = os.path.join(full_output_folder, file)
if pingpong:
images = to_pingpong(images)
frames = map(lambda x : Image.fromarray(tensor_to_bytes(x)), images)
# Use pillow directly to save an animated image
next(frames).save(
file_path,
format=format_ext.upper(),
save_all=True,
append_images=frames,
duration=round(1000 / frame_rate),
loop=loop_count,
compress_level=4,
**image_kwargs
)
output_files.append(file_path)
else:
# Use ffmpeg to save a video
if ffmpeg_path is None:
raise ProcessLookupError(f"ffmpeg is required for video outputs and could not be found.\nIn order to use video outputs, you must either:\n- Install imageio-ffmpeg with pip,\n- Place a ffmpeg executable in {os.path.abspath('')}, or\n- Install ffmpeg and add it to the system path.")
#Acquire additional format_widget values
kwargs = None
if manual_format_widgets is None:
if prompt is not None:
kwargs = prompt[unique_id]['inputs']
else:
manual_format_widgets = {}
if kwargs is None:
kwargs = get_format_widget_defaults(format_ext)
missing = {}
for k in kwargs.keys():
if k in manual_format_widgets:
kwargs[k] = manual_format_widgets[k]
else:
missing[k] = kwargs[k]
if len(missing) > 0:
logger.warn("Extra format values were not provided, the following defaults will be used: " + str(kwargs) + "\nThis is likely due to usage of ComfyUI-to-python. These values can be manually set by supplying a manual_format_widgets argument")
video_format = apply_format_widgets(format_ext, kwargs)
has_alpha = first_image.shape[-1] == 4
dim_alignment = video_format.get("dim_alignment", 8)
if (first_image.shape[1] % dim_alignment) or (first_image.shape[0] % dim_alignment):
#output frames must be padded
to_pad = (-first_image.shape[1] % dim_alignment,
-first_image.shape[0] % dim_alignment)
padding = (to_pad[0]//2, to_pad[0] - to_pad[0]//2,
to_pad[1]//2, to_pad[1] - to_pad[1]//2)
padfunc = torch.nn.ReplicationPad2d(padding)
def pad(image):
image = image.permute((2,0,1))#HWC to CHW
padded = padfunc(image.to(dtype=torch.float32))
return padded.permute((1,2,0))
images = map(pad, images)
new_dims = (-first_image.shape[1] % dim_alignment + first_image.shape[1],
-first_image.shape[0] % dim_alignment + first_image.shape[0])
dimensions = f"{new_dims[0]}x{new_dims[1]}"
logger.warn("Output images were not of valid resolution and have had padding applied")
else:
dimensions = f"{first_image.shape[1]}x{first_image.shape[0]}"
if loop_count > 0:
loop_args = ["-vf", "loop=loop=" + str(loop_count)+":size=" + str(num_frames)]
else:
loop_args = []
if pingpong:
if meta_batch is not None:
logger.error("pingpong is incompatible with batched output")
images = to_pingpong(images)
if video_format.get('input_color_depth', '8bit') == '16bit':
images = map(tensor_to_shorts, images)
if has_alpha:
i_pix_fmt = 'rgba64'
else:
i_pix_fmt = 'rgb48'
else:
images = map(tensor_to_bytes, images)
if has_alpha:
i_pix_fmt = 'rgba'
else:
i_pix_fmt = 'rgb24'
file = f"{filename}_{counter:05}.{video_format['extension']}"
file_path = os.path.join(full_output_folder, file)
bitrate_arg = []
bitrate = video_format.get('bitrate')
if bitrate is not None:
bitrate_arg = ["-b:v", str(bitrate) + "M" if video_format.get('megabit') == 'True' else str(bitrate) + "K"]
args = [ffmpeg_path, "-v", "error", "-f", "rawvideo", "-pix_fmt", i_pix_fmt,
"-s", dimensions, "-r", str(frame_rate), "-i", "-"] \
+ loop_args
images = map(lambda x: x.tobytes(), images)
env=os.environ.copy()
if "environment" in video_format:
env.update(video_format["environment"])
if "pre_pass" in video_format:
if meta_batch is not None:
#Performing a prepass requires keeping access to all frames.
#Potential solutions include keeping just output frames in
#memory or using 3 passes with intermediate file, but
#very long gifs probably shouldn't be encouraged
raise Exception("Formats which require a pre_pass are incompatible with Batch Manager.")
images = [b''.join(images)]
os.makedirs(folder_paths.get_temp_directory(), exist_ok=True)
pre_pass_args = args[:13] + video_format['pre_pass']
try:
subprocess.run(pre_pass_args, input=images[0], env=env,
capture_output=True, check=True)
except subprocess.CalledProcessError as e:
raise Exception("An error occurred in the ffmpeg prepass:\n" \
+ e.stderr.decode("utf-8"))
if "inputs_main_pass" in video_format:
args = args[:13] + video_format['inputs_main_pass'] + args[13:]
if output_process is None:
if 'gifski_pass' in video_format:
output_process = gifski_process(args, video_format, file_path, env)
else:
args += video_format['main_pass'] + bitrate_arg
output_process = ffmpeg_process(args, video_format, video_metadata, file_path, env)
#Proceed to first yield
output_process.send(None)
if meta_batch is not None:
meta_batch.outputs[unique_id] = (counter, output_process)
for image in images:
pbar.update(1)
output_process.send(image)
if meta_batch is not None:
requeue_workflow((meta_batch.unique_id, not meta_batch.has_closed_inputs))
if meta_batch is None or meta_batch.has_closed_inputs:
#Close pipe and wait for termination.
try:
total_frames_output = output_process.send(None)
output_process.send(None)
except StopIteration:
pass
if meta_batch is not None:
meta_batch.outputs.pop(unique_id)
if len(meta_batch.outputs) == 0:
meta_batch.reset()
else:
#batch is unfinished
#TODO: Check if empty output breaks other custom nodes
return {"ui": {"unfinished_batch": [True]}, "result": ((save_output, []),)}
output_files.append(file_path)
a_waveform = None
if audio is not None:
try:
#safely check if audio produced by VHS_LoadVideo actually exists
a_waveform = audio['waveform']
except:
pass
if a_waveform is not None:
# Create audio file if input was provided
output_file_with_audio = f"{filename}_{counter:05}-audio.{video_format['extension']}"
output_file_with_audio_path = os.path.join(full_output_folder, output_file_with_audio)
if "audio_pass" not in video_format:
logger.warn("Selected video format does not have explicit audio support")
video_format["audio_pass"] = ["-c:a", "libopus"]
# FFmpeg command with audio re-encoding
#TODO: expose audio quality options if format widgets makes it in
#Reconsider forcing apad/shortest
channels = audio['waveform'].size(1)
min_audio_dur = total_frames_output / frame_rate + 1
mux_args = [ffmpeg_path, "-v", "error", "-n", "-i", file_path,
"-ar", str(audio['sample_rate']), "-ac", str(channels),
"-f", "f32le", "-i", "-", "-c:v", "copy"] \
+ video_format["audio_pass"] \
+ ["-af", "apad=whole_dur="+str(min_audio_dur),
"-shortest", output_file_with_audio_path]
audio_data = audio['waveform'].squeeze(0).transpose(0,1) \
.numpy().tobytes()
try:
res = subprocess.run(mux_args, input=audio_data,
env=env, capture_output=True, check=True)
except subprocess.CalledProcessError as e:
raise Exception("An error occured in the ffmpeg subprocess:\n" \
+ e.stderr.decode("utf-8"))
if res.stderr:
print(res.stderr.decode("utf-8"), end="", file=sys.stderr)
output_files.append(output_file_with_audio_path)
#Return this file with audio to the webui.
#It will be muted unless opened or saved with right click
file = output_file_with_audio
previews = [
{
"filename": file,
"subfolder": subfolder,
"type": "output" if save_output else "temp",
"format": format,
"frame_rate": frame_rate,
}
]
if num_frames == 1 and 'png' in format and '%03d' in file:
previews[0]['format'] = 'image/png'
previews[0]['filename'] = file.replace('%03d', '001')
return {"ui": {"gifs": previews}, "result": ((save_output, output_files),)}
@classmethod
def VALIDATE_INPUTS(self, format, **kwargs):
return True
class LoadAudio:
@classmethod
def INPUT_TYPES(s):
#Hide ffmpeg formats if ffmpeg isn't available
return {
"required": {
"audio_file": ("STRING", {"default": "input/", "vhs_path_extensions": ['wav','mp3','ogg','m4a','flac']}),
},
"optional" : {"seek_seconds": ("FLOAT", {"default": 0, "min": 0})}
}
RETURN_TYPES = ("AUDIO",)
RETURN_NAMES = ("audio",)
CATEGORY = "Video Helper Suite π₯π
₯π
π
’/audio"
FUNCTION = "load_audio"
def load_audio(self, audio_file, seek_seconds):
audio_file = strip_path(audio_file)
if audio_file is None or validate_path(audio_file) != True:
raise Exception("audio_file is not a valid path: " + audio_file)
if is_url(audio_file):
audio_file = try_download_video(audio_file) or audio_file
#Eagerly fetch the audio since the user must be using it if the
#node executes, unlike Load Video
return (get_audio(audio_file, start_time=seek_seconds),)
@classmethod
def IS_CHANGED(s, audio_file, seek_seconds):
return hash_path(audio_file)
@classmethod
def VALIDATE_INPUTS(s, audio_file, **kwargs):
return validate_path(audio_file, allow_none=True)
class LoadAudioUpload:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = []
for f in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, f)):
file_parts = f.split('.')
if len(file_parts) > 1 and (file_parts[-1] in audio_extensions):
files.append(f)
return {"required": {
"audio": (sorted(files),),
"start_time": ("FLOAT" , {"default": 0, "min": 0, "max": 10000000, "step": 0.01}),
"duration": ("FLOAT" , {"default": 0, "min": 0, "max": 10000000, "step": 0.01}),
},
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’/audio"
RETURN_TYPES = ("AUDIO", )
RETURN_NAMES = ("audio",)
FUNCTION = "load_audio"
def load_audio(self, start_time, duration, **kwargs):
audio_file = folder_paths.get_annotated_filepath(strip_path(kwargs['audio']))
if audio_file is None or validate_path(audio_file) != True:
raise Exception("audio_file is not a valid path: " + audio_file)
return (get_audio(audio_file, start_time, duration),)
@classmethod
def IS_CHANGED(s, audio, start_time, duration):
audio_file = folder_paths.get_annotated_filepath(strip_path(audio))
return hash_path(audio_file)
@classmethod
def VALIDATE_INPUTS(s, audio, **kwargs):
audio_file = folder_paths.get_annotated_filepath(strip_path(audio))
return validate_path(audio_file, allow_none=True)
class AudioToVHSAudio:
"""Legacy method for external nodes that utilized VHS_AUDIO,
VHS_AUDIO is deprecated as a format and should no longer be used"""
@classmethod
def INPUT_TYPES(s):
return {"required": {"audio": ("AUDIO",)}}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’/audio"
RETURN_TYPES = ("VHS_AUDIO", )
RETURN_NAMES = ("vhs_audio",)
FUNCTION = "convert_audio"
def convert_audio(self, audio):
ar = str(audio['sample_rate'])
ac = str(audio['waveform'].size(1))
mux_args = [ffmpeg_path, "-f", "f32le", "-ar", ar, "-ac", ac,
"-i", "-", "-f", "wav", "-"]
audio_data = audio['waveform'].squeeze(0).transpose(0,1) \
.numpy().tobytes()
try:
res = subprocess.run(mux_args, input=audio_data,
capture_output=True, check=True)
except subprocess.CalledProcessError as e:
raise Exception("An error occured in the ffmpeg subprocess:\n" \
+ e.stderr.decode("utf-8"))
if res.stderr:
print(res.stderr.decode("utf-8"), end="", file=sys.stderr)
return (lambda: res.stdout,)
class VHSAudioToAudio:
"""Legacy method for external nodes that utilized VHS_AUDIO,
VHS_AUDIO is deprecated as a format and should no longer be used"""
@classmethod
def INPUT_TYPES(s):
return {"required": {"vhs_audio": ("VHS_AUDIO",)}}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’/audio"
RETURN_TYPES = ("AUDIO", )
RETURN_NAMES = ("audio",)
FUNCTION = "convert_audio"
def convert_audio(self, vhs_audio):
if not vhs_audio or not vhs_audio():
raise Exception("audio input is not valid")
args = [ffmpeg_path, "-i", '-']
try:
res = subprocess.run(args + ["-f", "f32le", "-"], input=vhs_audio(),
capture_output=True, check=True)
audio = torch.frombuffer(bytearray(res.stdout), dtype=torch.float32)
except subprocess.CalledProcessError as e:
raise Exception("An error occured in the ffmpeg subprocess:\n" \
+ e.stderr.decode("utf-8"))
match = re.search(', (\\d+) Hz, (\\w+), ',res.stderr.decode('utf-8'))
if match:
ar = int(match.group(1))
#NOTE: Just throwing an error for other channel types right now
#Will deal with issues if they come
ac = {"mono": 1, "stereo": 2}[match.group(2)]
else:
ar = 44100
ac = 2
audio = audio.reshape((-1,ac)).transpose(0,1).unsqueeze(0)
return ({'waveform': audio, 'sample_rate': ar},)
class PruneOutputs:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"filenames": ("VHS_FILENAMES",),
"options": (["Intermediate", "Intermediate and Utility"],)
}
}
RETURN_TYPES = ()
OUTPUT_NODE = True
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
FUNCTION = "prune_outputs"
def prune_outputs(self, filenames, options):
if len(filenames[1]) == 0:
return ()
assert(len(filenames[1]) <= 3 and len(filenames[1]) >= 2)
delete_list = []
if options in ["Intermediate", "Intermediate and Utility", "All"]:
delete_list += filenames[1][1:-1]
if options in ["Intermediate and Utility", "All"]:
delete_list.append(filenames[1][0])
if options in ["All"]:
delete_list.append(filenames[1][-1])
output_dirs = [os.path.abspath("output"), os.path.abspath("temp")]
for file in delete_list:
#Check that path is actually an output directory
if (os.path.commonpath([output_dirs[0], file]) != output_dirs[0]) \
and (os.path.commonpath([output_dirs[1], file]) != output_dirs[1]):
raise Exception("Tried to prune output from invalid directory: " + file)
if os.path.exists(file):
os.remove(file)
return ()
class BatchManager:
def __init__(self, frames_per_batch=-1):
self.frames_per_batch = frames_per_batch
self.inputs = {}
self.outputs = {}
self.unique_id = None
self.has_closed_inputs = False
self.total_frames = float('inf')
def reset(self):
self.close_inputs()
for key in self.outputs:
if getattr(self.outputs[key][-1], "gi_suspended", False):
try:
self.outputs[key][-1].send(None)
except StopIteration:
pass
self.__init__(self.frames_per_batch)
def has_open_inputs(self):
return len(self.inputs) > 0
def close_inputs(self):
for key in self.inputs:
if getattr(self.inputs[key][-1], "gi_suspended", False):
try:
self.inputs[key][-1].send(1)
except StopIteration:
pass
self.inputs = {}
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"frames_per_batch": ("INT", {"default": 16, "min": 1, "max": 128, "step": 1})
},
"hidden": {
"prompt": "PROMPT",
"unique_id": "UNIQUE_ID"
},
}
RETURN_TYPES = ("VHS_BatchManager",)
RETURN_NAMES = ("meta_batch",)
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
FUNCTION = "update_batch"
def update_batch(self, frames_per_batch, prompt=None, unique_id=None):
if unique_id is not None and prompt is not None:
requeue = prompt[unique_id]['inputs'].get('requeue', 0)
else:
requeue = 0
if requeue == 0:
self.reset()
self.frames_per_batch = frames_per_batch
self.unique_id = unique_id
else:
num_batches = (self.total_frames+self.frames_per_batch-1)//frames_per_batch
print(f'Meta-Batch {requeue}/{num_batches}')
#onExecuted seems to not be called unless some message is sent
return (self,)
class VideoInfo:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"video_info": ("VHS_VIDEOINFO",),
}
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
RETURN_TYPES = ("FLOAT","INT", "FLOAT", "INT", "INT", "FLOAT","INT", "FLOAT", "INT", "INT")
RETURN_NAMES = (
"source_fpsπ¨",
"source_frame_countπ¨",
"source_durationπ¨",
"source_widthπ¨",
"source_heightπ¨",
"loaded_fpsπ¦",
"loaded_frame_countπ¦",
"loaded_durationπ¦",
"loaded_widthπ¦",
"loaded_heightπ¦",
)
FUNCTION = "get_video_info"
def get_video_info(self, video_info):
keys = ["fps", "frame_count", "duration", "width", "height"]
source_info = []
loaded_info = []
for key in keys:
source_info.append(video_info[f"source_{key}"])
loaded_info.append(video_info[f"loaded_{key}"])
return (*source_info, *loaded_info)
class VideoInfoSource:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"video_info": ("VHS_VIDEOINFO",),
}
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
RETURN_TYPES = ("FLOAT","INT", "FLOAT", "INT", "INT",)
RETURN_NAMES = (
"fpsπ¨",
"frame_countπ¨",
"durationπ¨",
"widthπ¨",
"heightπ¨",
)
FUNCTION = "get_video_info"
def get_video_info(self, video_info):
keys = ["fps", "frame_count", "duration", "width", "height"]
source_info = []
for key in keys:
source_info.append(video_info[f"source_{key}"])
return (*source_info,)
class VideoInfoLoaded:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"video_info": ("VHS_VIDEOINFO",),
}
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
RETURN_TYPES = ("FLOAT","INT", "FLOAT", "INT", "INT",)
RETURN_NAMES = (
"fpsπ¦",
"frame_countπ¦",
"durationπ¦",
"widthπ¦",
"heightπ¦",
)
FUNCTION = "get_video_info"
def get_video_info(self, video_info):
keys = ["fps", "frame_count", "duration", "width", "height"]
loaded_info = []
for key in keys:
loaded_info.append(video_info[f"loaded_{key}"])
return (*loaded_info,)
class SelectFilename:
@classmethod
def INPUT_TYPES(s):
return {"required": {"filenames": ("VHS_FILENAMES",), "index": ("INT", {"default": -1, "step": 1, "min": -1})}}
RETURN_TYPES = ("STRING",)
RETURN_NAMES =("Filename",)
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
FUNCTION = "select_filename"
def select_filename(self, filenames, index):
return (filenames[1][index],)
class Unbatch:
class Any(str):
def __ne__(self, other):
return False
@classmethod
def INPUT_TYPES(s):
return {"required": {"batched": ("*",)}}
RETURN_TYPES = (Any('*'),)
INPUT_IS_LIST = True
RETURN_NAMES =("unbatched",)
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
FUNCTION = "unbatch"
EXPERIMENTAL = True
def unbatch(self, batched):
if isinstance(batched[0], torch.Tensor):
return (torch.cat(batched),)
if isinstance(batched[0], dict):
out = batched[0].copy()
out['samples'] = torch.cat([x['samples'] for x in batched])
out.pop('batch_index', None)
return (out,)
return (functools.reduce(lambda x,y: x+y, batched),)
@classmethod
def VALIDATE_INPUTS(cls, input_types):
return True
NODE_CLASS_MAPPINGS = {
"VHS_VideoCombine": VideoCombine,
"VHS_LoadVideo": LoadVideoUpload,
"VHS_LoadVideoPath": LoadVideoPath,
"VHS_LoadImages": LoadImagesFromDirectoryUpload,
"VHS_LoadImagesPath": LoadImagesFromDirectoryPath,
"VHS_LoadAudio": LoadAudio,
"VHS_LoadAudioUpload": LoadAudioUpload,
"VHS_AudioToVHSAudio": AudioToVHSAudio,
"VHS_VHSAudioToAudio": VHSAudioToAudio,
"VHS_PruneOutputs": PruneOutputs,
"VHS_BatchManager": BatchManager,
"VHS_VideoInfo": VideoInfo,
"VHS_VideoInfoSource": VideoInfoSource,
"VHS_VideoInfoLoaded": VideoInfoLoaded,
"VHS_SelectFilename": SelectFilename,
# Batched Nodes
"VHS_VAEEncodeBatched": VAEEncodeBatched,
"VHS_VAEDecodeBatched": VAEDecodeBatched,
# Latent and Image nodes
"VHS_SplitLatents": SplitLatents,
"VHS_SplitImages": SplitImages,
"VHS_SplitMasks": SplitMasks,
"VHS_MergeLatents": MergeLatents,
"VHS_MergeImages": MergeImages,
"VHS_MergeMasks": MergeMasks,
"VHS_GetLatentCount": GetLatentCount,
"VHS_GetImageCount": GetImageCount,
"VHS_GetMaskCount": GetMaskCount,
"VHS_DuplicateLatents": RepeatLatents,
"VHS_DuplicateImages": RepeatImages,
"VHS_DuplicateMasks": RepeatMasks,
"VHS_SelectEveryNthLatent": SelectEveryNthLatent,
"VHS_SelectEveryNthImage": SelectEveryNthImage,
"VHS_SelectEveryNthMask": SelectEveryNthMask,
"VHS_SelectLatents": SelectLatents,
"VHS_SelectImages": SelectImages,
"VHS_SelectMasks": SelectMasks,
"VHS_Unbatch": Unbatch,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"VHS_VideoCombine": "Video Combine π₯π
₯π
π
’",
"VHS_LoadVideo": "Load Video (Upload) π₯π
₯π
π
’",
"VHS_LoadVideoPath": "Load Video (Path) π₯π
₯π
π
’",
"VHS_LoadImages": "Load Images (Upload) π₯π
₯π
π
’",
"VHS_LoadImagesPath": "Load Images (Path) π₯π
₯π
π
’",
"VHS_LoadAudio": "Load Audio (Path)π₯π
₯π
π
’",
"VHS_LoadAudioUpload": "Load Audio (Upload)π₯π
₯π
π
’",
"VHS_AudioToVHSAudio": "Audio to legacy VHS_AUDIOπ₯π
₯π
π
’",
"VHS_VHSAudioToAudio": "Legacy VHS_AUDIO to Audioπ₯π
₯π
π
’",
"VHS_PruneOutputs": "Prune Outputs π₯π
₯π
π
’",
"VHS_BatchManager": "Meta Batch Manager π₯π
₯π
π
’",
"VHS_VideoInfo": "Video Info π₯π
₯π
π
’",
"VHS_VideoInfoSource": "Video Info (Source) π₯π
₯π
π
’",
"VHS_VideoInfoLoaded": "Video Info (Loaded) π₯π
₯π
π
’",
"VHS_SelectFilename": "Select Filename π₯π
₯π
π
’",
# Batched Nodes
"VHS_VAEEncodeBatched": "VAE Encode Batched π₯π
₯π
π
’",
"VHS_VAEDecodeBatched": "VAE Decode Batched π₯π
₯π
π
’",
# Latent and Image nodes
"VHS_SplitLatents": "Split Latents π₯π
₯π
π
’",
"VHS_SplitImages": "Split Images π₯π
₯π
π
’",
"VHS_SplitMasks": "Split Masks π₯π
₯π
π
’",
"VHS_MergeLatents": "Merge Latents π₯π
₯π
π
’",
"VHS_MergeImages": "Merge Images π₯π
₯π
π
’",
"VHS_MergeMasks": "Merge Masks π₯π
₯π
π
’",
"VHS_GetLatentCount": "Get Latent Count π₯π
₯π
π
’",
"VHS_GetImageCount": "Get Image Count π₯π
₯π
π
’",
"VHS_GetMaskCount": "Get Mask Count π₯π
₯π
π
’",
"VHS_DuplicateLatents": "Repeat Latents π₯π
₯π
π
’",
"VHS_DuplicateImages": "Repeat Images π₯π
₯π
π
’",
"VHS_DuplicateMasks": "Repeat Masks π₯π
₯π
π
’",
"VHS_SelectEveryNthLatent": "Select Every Nth Latent π₯π
₯π
π
’",
"VHS_SelectEveryNthImage": "Select Every Nth Image π₯π
₯π
π
’",
"VHS_SelectEveryNthMask": "Select Every Nth Mask π₯π
₯π
π
’",
"VHS_SelectLatents": "Select Latents π₯π
₯π
π
’",
"VHS_SelectImages": "Select Images π₯π
₯π
π
’",
"VHS_SelectMasks": "Select Masks π₯π
₯π
π
’",
"VHS_Unbatch": "Unbatch π₯π
₯π
π
’",
}
|