File size: 42,267 Bytes
7eb3676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
import os
import sys
import json
import subprocess
import numpy as np
import re
import datetime
from typing import List
import torch
from PIL import Image, ExifTags
from PIL.PngImagePlugin import PngInfo
from pathlib import Path
from string import Template
import itertools
import functools

import folder_paths
from .logger import logger
from .image_latent_nodes import *
from .load_video_nodes import LoadVideoUpload, LoadVideoPath
from .load_images_nodes import LoadImagesFromDirectoryUpload, LoadImagesFromDirectoryPath
from .batched_nodes import VAEEncodeBatched, VAEDecodeBatched
from .utils import ffmpeg_path, get_audio, hash_path, validate_path, requeue_workflow, gifski_path, calculate_file_hash, strip_path, try_download_video, is_url, imageOrLatent
from comfy.utils import ProgressBar

folder_paths.folder_names_and_paths["VHS_video_formats"] = (
    [
        os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "video_formats"),
    ],
    [".json"]
)
audio_extensions = ['mp3', 'mp4', 'wav', 'ogg']

def gen_format_widgets(video_format):
    for k in video_format:
        if k.endswith("_pass"):
            for i in range(len(video_format[k])):
                if isinstance(video_format[k][i], list):
                    item = [video_format[k][i]]
                    yield item
                    video_format[k][i] = item[0]
        else:
            if isinstance(video_format[k], list):
                item = [video_format[k]]
                yield item
                video_format[k] = item[0]

def get_video_formats():
    formats = []
    for format_name in folder_paths.get_filename_list("VHS_video_formats"):
        format_name = format_name[:-5]
        video_format_path = folder_paths.get_full_path("VHS_video_formats", format_name + ".json")
        with open(video_format_path, 'r') as stream:
            video_format = json.load(stream)
        if "gifski_pass" in video_format and gifski_path is None:
            #Skip format
            continue
        widgets = [w[0] for w in gen_format_widgets(video_format)]
        if (len(widgets) > 0):
            formats.append(["video/" + format_name, widgets])
        else:
            formats.append("video/" + format_name)
    return formats

def get_format_widget_defaults(format_name):
    video_format_path = folder_paths.get_full_path("VHS_video_formats", format_name + ".json")
    with open(video_format_path, 'r') as stream:
        video_format = json.load(stream)
    results = {}
    for w in gen_format_widgets(video_format):
        if len(w[0]) > 2 and 'default' in w[0][2]:
            default = w[0][2]['default']
        else:
            if type(w[0][1]) is list:
                default = w[0][1][0]
            else:
                #NOTE: This doesn't respect max/min, but should be good enough as a fallback to a fallback to a fallback
                default = {"BOOLEAN": False, "INT": 0, "FLOAT": 0, "STRING": ""}[w[0][1]]
        results[w[0][0]] = default
    return results


def apply_format_widgets(format_name, kwargs):
    video_format_path = folder_paths.get_full_path("VHS_video_formats", format_name + ".json")
    with open(video_format_path, 'r') as stream:
        video_format = json.load(stream)
    for w in gen_format_widgets(video_format):
        assert(w[0][0] in kwargs)
        if len(w[0]) > 3:
            w[0] = Template(w[0][3]).substitute(val=kwargs[w[0][0]])
        else:
            w[0] = str(kwargs[w[0][0]])
    return video_format

def tensor_to_int(tensor, bits):
    #TODO: investigate benefit of rounding by adding 0.5 before clip/cast
    tensor = tensor.cpu().numpy() * (2**bits-1)
    return np.clip(tensor, 0, (2**bits-1))
def tensor_to_shorts(tensor):
    return tensor_to_int(tensor, 16).astype(np.uint16)
def tensor_to_bytes(tensor):
    return tensor_to_int(tensor, 8).astype(np.uint8)

def ffmpeg_process(args, video_format, video_metadata, file_path, env):

    res = None
    frame_data = yield
    total_frames_output = 0
    if video_format.get('save_metadata', 'False') != 'False':
        os.makedirs(folder_paths.get_temp_directory(), exist_ok=True)
        metadata = json.dumps(video_metadata)
        metadata_path = os.path.join(folder_paths.get_temp_directory(), "metadata.txt")
        #metadata from file should  escape = ; # \ and newline
        metadata = metadata.replace("\\","\\\\")
        metadata = metadata.replace(";","\\;")
        metadata = metadata.replace("#","\\#")
        metadata = metadata.replace("=","\\=")
        metadata = metadata.replace("\n","\\\n")
        metadata = "comment=" + metadata
        with open(metadata_path, "w") as f:
            f.write(";FFMETADATA1\n")
            f.write(metadata)
        m_args = args[:1] + ["-i", metadata_path] + args[1:] + ["-metadata", "creation_time=now"]
        with subprocess.Popen(m_args + [file_path], stderr=subprocess.PIPE,
                              stdin=subprocess.PIPE, env=env) as proc:
            try:
                while frame_data is not None:
                    proc.stdin.write(frame_data)
                    #TODO: skip flush for increased speed
                    frame_data = yield
                    total_frames_output+=1
                proc.stdin.flush()
                proc.stdin.close()
                res = proc.stderr.read()
            except BrokenPipeError as e:
                err = proc.stderr.read()
                #Check if output file exists. If it does, the re-execution
                #will also fail. This obscures the cause of the error
                #and seems to never occur concurrent to the metadata issue
                if os.path.exists(file_path):
                    raise Exception("An error occurred in the ffmpeg subprocess:\n" \
                            + err.decode("utf-8"))
                #Res was not set
                print(err.decode("utf-8"), end="", file=sys.stderr)
                logger.warn("An error occurred when saving with metadata")
    if res != b'':
        with subprocess.Popen(args + [file_path], stderr=subprocess.PIPE,
                              stdin=subprocess.PIPE, env=env) as proc:
            try:
                while frame_data is not None:
                    proc.stdin.write(frame_data)
                    frame_data = yield
                    total_frames_output+=1
                proc.stdin.flush()
                proc.stdin.close()
                res = proc.stderr.read()
            except BrokenPipeError as e:
                res = proc.stderr.read()
                raise Exception("An error occurred in the ffmpeg subprocess:\n" \
                        + res.decode("utf-8"))
    yield total_frames_output
    if len(res) > 0:
        print(res.decode("utf-8"), end="", file=sys.stderr)

def gifski_process(args, video_format, file_path, env):
    frame_data = yield
    with subprocess.Popen(args + video_format['main_pass'] + ['-f', 'yuv4mpegpipe', '-'],
                          stderr=subprocess.PIPE, stdin=subprocess.PIPE,
                          stdout=subprocess.PIPE, env=env) as procff:
        with subprocess.Popen([gifski_path] + video_format['gifski_pass']
                              + ['-q', '-o', file_path, '-'], stderr=subprocess.PIPE,
                              stdin=procff.stdout, stdout=subprocess.PIPE,
                              env=env) as procgs:
            try:
                while frame_data is not None:
                    procff.stdin.write(frame_data)
                    frame_data = yield
                procff.stdin.flush()
                procff.stdin.close()
                resff = procff.stderr.read()
                resgs = procgs.stderr.read()
                outgs = procgs.stdout.read()
            except BrokenPipeError as e:
                procff.stdin.close()
                resff = procff.stderr.read()
                resgs = procgs.stderr.read()
                raise Exception("An error occurred while creating gifski output\n" \
                        + "Make sure you are using gifski --version >=1.32.0\nffmpeg: " \
                        + resff.decode("utf-8") + '\ngifski: ' + resgs.decode("utf-8"))
    if len(resff) > 0:
        print(resff.decode("utf-8"), end="", file=sys.stderr)
    if len(resgs) > 0:
        print(resgs.decode("utf-8"), end="", file=sys.stderr)
    #should always be empty as the quiet flag is passed
    if len(outgs) > 0:
        print(outgs.decode("utf-8"))

def to_pingpong(inp):
    if not hasattr(inp, "__getitem__"):
        inp = list(inp)
    yield from inp
    for i in range(len(inp)-2,0,-1):
        yield inp[i]

class VideoCombine:
    @classmethod
    def INPUT_TYPES(s):
        ffmpeg_formats = get_video_formats()
        return {
            "required": {
                "images": (imageOrLatent,),
                "frame_rate": (
                    "FLOAT",
                    {"default": 8, "min": 1, "step": 1},
                ),
                "loop_count": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1}),
                "filename_prefix": ("STRING", {"default": "AnimateDiff"}),
                "format": (["image/gif", "image/webp"] + ffmpeg_formats,),
                "pingpong": ("BOOLEAN", {"default": False}),
                "save_output": ("BOOLEAN", {"default": True}),
            },
            "optional": {
                "audio": ("AUDIO",),
                "meta_batch": ("VHS_BatchManager",),
                "vae": ("VAE",),
            },
            "hidden": {
                "prompt": "PROMPT",
                "extra_pnginfo": "EXTRA_PNGINFO",
                "unique_id": "UNIQUE_ID"
            },
        }

    RETURN_TYPES = ("VHS_FILENAMES",)
    RETURN_NAMES = ("Filenames",)
    OUTPUT_NODE = True
    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’"
    FUNCTION = "combine_video"

    def combine_video(
        self,
        frame_rate: int,
        loop_count: int,
        images=None,
        latents=None,
        filename_prefix="AnimateDiff",
        format="image/gif",
        pingpong=False,
        save_output=True,
        prompt=None,
        extra_pnginfo=None,
        audio=None,
        unique_id=None,
        manual_format_widgets=None,
        meta_batch=None,
        vae=None
    ):
        if latents is not None:
            images = latents
        if images is None:
            return ((save_output, []),)
        if vae is not None:
            if isinstance(images, dict):
                images = images['samples']
            else:
                vae = None

        if isinstance(images, torch.Tensor) and images.size(0) == 0:
            return ((save_output, []),)
        num_frames = len(images)
        pbar = ProgressBar(num_frames)
        if vae is not None:
            downscale_ratio = getattr(vae, "downscale_ratio", 8)
            width = images.size(3)*downscale_ratio
            height = images.size(2)*downscale_ratio
            frames_per_batch = (1920 * 1080 * 16) // (width * height) or 1
            #Python 3.12 adds an itertools.batched, but it's easily replicated for legacy support
            def batched(it, n):
                while batch := tuple(itertools.islice(it, n)):
                    yield batch
            def batched_encode(images, vae, frames_per_batch):
                for batch in batched(iter(images), frames_per_batch):
                    image_batch = torch.from_numpy(np.array(batch))
                    yield from vae.decode(image_batch)
            images = batched_encode(images, vae, frames_per_batch)
            first_image = next(images)
            #repush first_image
            images = itertools.chain([first_image], images)
        else:
            first_image = images[0]
            images = iter(images)
        # get output information
        output_dir = (
            folder_paths.get_output_directory()
            if save_output
            else folder_paths.get_temp_directory()
        )
        (
            full_output_folder,
            filename,
            _,
            subfolder,
            _,
        ) = folder_paths.get_save_image_path(filename_prefix, output_dir)
        output_files = []

        metadata = PngInfo()
        video_metadata = {}
        if prompt is not None:
            metadata.add_text("prompt", json.dumps(prompt))
            video_metadata["prompt"] = json.dumps(prompt)
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata.add_text(x, json.dumps(extra_pnginfo[x]))
                video_metadata[x] = extra_pnginfo[x]
        metadata.add_text("CreationTime", datetime.datetime.now().isoformat(" ")[:19])

        if meta_batch is not None and unique_id in meta_batch.outputs:
            (counter, output_process) = meta_batch.outputs[unique_id]
        else:
            # comfy counter workaround
            max_counter = 0

            # Loop through the existing files
            matcher = re.compile(f"{re.escape(filename)}_(\\d+)\\D*\\..+", re.IGNORECASE)
            for existing_file in os.listdir(full_output_folder):
                # Check if the file matches the expected format
                match = matcher.fullmatch(existing_file)
                if match:
                    # Extract the numeric portion of the filename
                    file_counter = int(match.group(1))
                    # Update the maximum counter value if necessary
                    if file_counter > max_counter:
                        max_counter = file_counter

            # Increment the counter by 1 to get the next available value
            counter = max_counter + 1
            output_process = None

        # save first frame as png to keep metadata
        file = f"{filename}_{counter:05}.png"
        file_path = os.path.join(full_output_folder, file)
        Image.fromarray(tensor_to_bytes(first_image)).save(
            file_path,
            pnginfo=metadata,
            compress_level=4,
        )
        output_files.append(file_path)

        format_type, format_ext = format.split("/")
        if format_type == "image":
            if meta_batch is not None:
                raise Exception("Pillow('image/') formats are not compatible with batched output")
            image_kwargs = {}
            if format_ext == "gif":
                image_kwargs['disposal'] = 2
            if format_ext == "webp":
                #Save timestamp information
                exif = Image.Exif()
                exif[ExifTags.IFD.Exif] = {36867: datetime.datetime.now().isoformat(" ")[:19]}
                image_kwargs['exif'] = exif
            file = f"{filename}_{counter:05}.{format_ext}"
            file_path = os.path.join(full_output_folder, file)
            if pingpong:
                images = to_pingpong(images)
            frames = map(lambda x : Image.fromarray(tensor_to_bytes(x)), images)
            # Use pillow directly to save an animated image
            next(frames).save(
                file_path,
                format=format_ext.upper(),
                save_all=True,
                append_images=frames,
                duration=round(1000 / frame_rate),
                loop=loop_count,
                compress_level=4,
                **image_kwargs
            )
            output_files.append(file_path)
        else:
            # Use ffmpeg to save a video
            if ffmpeg_path is None:
                raise ProcessLookupError(f"ffmpeg is required for video outputs and could not be found.\nIn order to use video outputs, you must either:\n- Install imageio-ffmpeg with pip,\n- Place a ffmpeg executable in {os.path.abspath('')}, or\n- Install ffmpeg and add it to the system path.")

            #Acquire additional format_widget values
            kwargs = None
            if manual_format_widgets is None:
                if prompt is not None:
                    kwargs = prompt[unique_id]['inputs']
                else:
                    manual_format_widgets = {}
            if kwargs is None:
                kwargs = get_format_widget_defaults(format_ext)
                missing = {}
                for k in kwargs.keys():
                    if k in manual_format_widgets:
                        kwargs[k] = manual_format_widgets[k]
                    else:
                        missing[k] = kwargs[k]
                if len(missing) > 0:
                    logger.warn("Extra format values were not provided, the following defaults will be used: " + str(kwargs) + "\nThis is likely due to usage of ComfyUI-to-python. These values can be manually set by supplying a manual_format_widgets argument")

            video_format = apply_format_widgets(format_ext, kwargs)
            has_alpha = first_image.shape[-1] == 4
            dim_alignment = video_format.get("dim_alignment", 8)
            if (first_image.shape[1] % dim_alignment) or (first_image.shape[0] % dim_alignment):
                #output frames must be padded
                to_pad = (-first_image.shape[1] % dim_alignment,
                          -first_image.shape[0] % dim_alignment)
                padding = (to_pad[0]//2, to_pad[0] - to_pad[0]//2,
                           to_pad[1]//2, to_pad[1] - to_pad[1]//2)
                padfunc = torch.nn.ReplicationPad2d(padding)
                def pad(image):
                    image = image.permute((2,0,1))#HWC to CHW
                    padded = padfunc(image.to(dtype=torch.float32))
                    return padded.permute((1,2,0))
                images = map(pad, images)
                new_dims = (-first_image.shape[1] % dim_alignment + first_image.shape[1],
                            -first_image.shape[0] % dim_alignment + first_image.shape[0])
                dimensions = f"{new_dims[0]}x{new_dims[1]}"
                logger.warn("Output images were not of valid resolution and have had padding applied")
            else:
                dimensions = f"{first_image.shape[1]}x{first_image.shape[0]}"
            if loop_count > 0:
                loop_args = ["-vf", "loop=loop=" + str(loop_count)+":size=" + str(num_frames)]
            else:
                loop_args = []
            if pingpong:
                if meta_batch is not None:
                    logger.error("pingpong is incompatible with batched output")
                images = to_pingpong(images)
            if video_format.get('input_color_depth', '8bit') == '16bit':
                images = map(tensor_to_shorts, images)
                if has_alpha:
                    i_pix_fmt = 'rgba64'
                else:
                    i_pix_fmt = 'rgb48'
            else:
                images = map(tensor_to_bytes, images)
                if has_alpha:
                    i_pix_fmt = 'rgba'
                else:
                    i_pix_fmt = 'rgb24'
            file = f"{filename}_{counter:05}.{video_format['extension']}"
            file_path = os.path.join(full_output_folder, file)
            bitrate_arg = []
            bitrate = video_format.get('bitrate')
            if bitrate is not None:
                bitrate_arg = ["-b:v", str(bitrate) + "M" if video_format.get('megabit') == 'True' else str(bitrate) + "K"]
            args = [ffmpeg_path, "-v", "error", "-f", "rawvideo", "-pix_fmt", i_pix_fmt,
                    "-s", dimensions, "-r", str(frame_rate), "-i", "-"] \
                    + loop_args

            images = map(lambda x: x.tobytes(), images)
            env=os.environ.copy()
            if  "environment" in video_format:
                env.update(video_format["environment"])

            if "pre_pass" in video_format:
                if meta_batch is not None:
                    #Performing a prepass requires keeping access to all frames.
                    #Potential solutions include keeping just output frames in
                    #memory or using 3 passes with intermediate file, but
                    #very long gifs probably shouldn't be encouraged
                    raise Exception("Formats which require a pre_pass are incompatible with Batch Manager.")
                images = [b''.join(images)]
                os.makedirs(folder_paths.get_temp_directory(), exist_ok=True)
                pre_pass_args = args[:13] + video_format['pre_pass']
                try:
                    subprocess.run(pre_pass_args, input=images[0], env=env,
                                   capture_output=True, check=True)
                except subprocess.CalledProcessError as e:
                    raise Exception("An error occurred in the ffmpeg prepass:\n" \
                            + e.stderr.decode("utf-8"))
            if "inputs_main_pass" in video_format:
                args = args[:13] + video_format['inputs_main_pass'] + args[13:]

            if output_process is None:
                if 'gifski_pass' in video_format:
                    output_process = gifski_process(args, video_format, file_path, env)
                else:
                    args += video_format['main_pass'] + bitrate_arg
                    output_process = ffmpeg_process(args, video_format, video_metadata, file_path, env)
                #Proceed to first yield
                output_process.send(None)
                if meta_batch is not None:
                    meta_batch.outputs[unique_id] = (counter, output_process)

            for image in images:
                pbar.update(1)
                output_process.send(image)
            if meta_batch is not None:
                requeue_workflow((meta_batch.unique_id, not meta_batch.has_closed_inputs))
            if meta_batch is None or meta_batch.has_closed_inputs:
                #Close pipe and wait for termination.
                try:
                    total_frames_output = output_process.send(None)
                    output_process.send(None)
                except StopIteration:
                    pass
                if meta_batch is not None:
                    meta_batch.outputs.pop(unique_id)
                    if len(meta_batch.outputs) == 0:
                        meta_batch.reset()
            else:
                #batch is unfinished
                #TODO: Check if empty output breaks other custom nodes
                return {"ui": {"unfinished_batch": [True]}, "result": ((save_output, []),)}

            output_files.append(file_path)


            a_waveform = None
            if audio is not None:
                try:
                    #safely check if audio produced by VHS_LoadVideo actually exists
                    a_waveform = audio['waveform']
                except:
                    pass
            if a_waveform is not None:
                # Create audio file if input was provided
                output_file_with_audio = f"{filename}_{counter:05}-audio.{video_format['extension']}"
                output_file_with_audio_path = os.path.join(full_output_folder, output_file_with_audio)
                if "audio_pass" not in video_format:
                    logger.warn("Selected video format does not have explicit audio support")
                    video_format["audio_pass"] = ["-c:a", "libopus"]


                # FFmpeg command with audio re-encoding
                #TODO: expose audio quality options if format widgets makes it in
                #Reconsider forcing apad/shortest
                channels = audio['waveform'].size(1)
                min_audio_dur = total_frames_output / frame_rate + 1
                mux_args = [ffmpeg_path, "-v", "error", "-n", "-i", file_path,
                            "-ar", str(audio['sample_rate']), "-ac", str(channels),
                            "-f", "f32le", "-i", "-", "-c:v", "copy"] \
                            + video_format["audio_pass"] \
                            + ["-af", "apad=whole_dur="+str(min_audio_dur),
                               "-shortest", output_file_with_audio_path]

                audio_data = audio['waveform'].squeeze(0).transpose(0,1) \
                        .numpy().tobytes()
                try:
                    res = subprocess.run(mux_args, input=audio_data,
                                         env=env, capture_output=True, check=True)
                except subprocess.CalledProcessError as e:
                    raise Exception("An error occured in the ffmpeg subprocess:\n" \
                            + e.stderr.decode("utf-8"))
                if res.stderr:
                    print(res.stderr.decode("utf-8"), end="", file=sys.stderr)
                output_files.append(output_file_with_audio_path)
                #Return this file with audio to the webui.
                #It will be muted unless opened or saved with right click
                file = output_file_with_audio

        previews = [
            {
                "filename": file,
                "subfolder": subfolder,
                "type": "output" if save_output else "temp",
                "format": format,
                "frame_rate": frame_rate,
            }
        ]
        if num_frames == 1 and 'png' in format and '%03d' in file:
            previews[0]['format'] = 'image/png'
            previews[0]['filename'] = file.replace('%03d', '001')
        return {"ui": {"gifs": previews}, "result": ((save_output, output_files),)}
    @classmethod
    def VALIDATE_INPUTS(self, format, **kwargs):
        return True

class LoadAudio:
    @classmethod
    def INPUT_TYPES(s):
        #Hide ffmpeg formats if ffmpeg isn't available
        return {
            "required": {
                "audio_file": ("STRING", {"default": "input/", "vhs_path_extensions": ['wav','mp3','ogg','m4a','flac']}),
                },
            "optional" : {"seek_seconds": ("FLOAT", {"default": 0, "min": 0})}
        }

    RETURN_TYPES = ("AUDIO",)
    RETURN_NAMES = ("audio",)
    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’/audio"
    FUNCTION = "load_audio"
    def load_audio(self, audio_file, seek_seconds):
        audio_file = strip_path(audio_file)
        if audio_file is None or validate_path(audio_file) != True:
            raise Exception("audio_file is not a valid path: " + audio_file)
        if is_url(audio_file):
            audio_file = try_download_video(audio_file) or audio_file
        #Eagerly fetch the audio since the user must be using it if the
        #node executes, unlike Load Video
        return (get_audio(audio_file, start_time=seek_seconds),)

    @classmethod
    def IS_CHANGED(s, audio_file, seek_seconds):
        return hash_path(audio_file)

    @classmethod
    def VALIDATE_INPUTS(s, audio_file, **kwargs):
        return validate_path(audio_file, allow_none=True)

class LoadAudioUpload:
    @classmethod
    def INPUT_TYPES(s):
        input_dir = folder_paths.get_input_directory()
        files = []
        for f in os.listdir(input_dir):
            if os.path.isfile(os.path.join(input_dir, f)):
                file_parts = f.split('.')
                if len(file_parts) > 1 and (file_parts[-1] in audio_extensions):
                    files.append(f)
        return {"required": {
                    "audio": (sorted(files),),
                    "start_time": ("FLOAT" , {"default": 0, "min": 0, "max": 10000000, "step": 0.01}),
                    "duration": ("FLOAT" , {"default": 0, "min": 0, "max": 10000000, "step": 0.01}),
                     },
                }

    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’/audio"

    RETURN_TYPES = ("AUDIO", )
    RETURN_NAMES = ("audio",)
    FUNCTION = "load_audio"

    def load_audio(self, start_time, duration, **kwargs):
        audio_file = folder_paths.get_annotated_filepath(strip_path(kwargs['audio']))
        if audio_file is None or validate_path(audio_file) != True:
            raise Exception("audio_file is not a valid path: " + audio_file)
        
        return (get_audio(audio_file, start_time, duration),)

    @classmethod
    def IS_CHANGED(s, audio, start_time, duration):
        audio_file = folder_paths.get_annotated_filepath(strip_path(audio))
        return hash_path(audio_file)

    @classmethod
    def VALIDATE_INPUTS(s, audio, **kwargs):
        audio_file = folder_paths.get_annotated_filepath(strip_path(audio))
        return validate_path(audio_file, allow_none=True)
class AudioToVHSAudio:
    """Legacy method for external nodes that utilized VHS_AUDIO,
    VHS_AUDIO is deprecated as a format and should no longer be used"""
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"audio": ("AUDIO",)}}
    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’/audio"

    RETURN_TYPES = ("VHS_AUDIO", )
    RETURN_NAMES = ("vhs_audio",)
    FUNCTION = "convert_audio"

    def convert_audio(self, audio):
        ar = str(audio['sample_rate'])
        ac = str(audio['waveform'].size(1))
        mux_args = [ffmpeg_path, "-f", "f32le", "-ar", ar, "-ac", ac,
                    "-i", "-", "-f", "wav", "-"]

        audio_data = audio['waveform'].squeeze(0).transpose(0,1) \
                .numpy().tobytes()
        try:
            res = subprocess.run(mux_args, input=audio_data,
                                 capture_output=True, check=True)
        except subprocess.CalledProcessError as e:
            raise Exception("An error occured in the ffmpeg subprocess:\n" \
                    + e.stderr.decode("utf-8"))
        if res.stderr:
            print(res.stderr.decode("utf-8"), end="", file=sys.stderr)
        return (lambda: res.stdout,)

class VHSAudioToAudio:
    """Legacy method for external nodes that utilized VHS_AUDIO,
    VHS_AUDIO is deprecated as a format and should no longer be used"""
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"vhs_audio": ("VHS_AUDIO",)}}
    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’/audio"

    RETURN_TYPES = ("AUDIO", )
    RETURN_NAMES = ("audio",)
    FUNCTION = "convert_audio"

    def convert_audio(self, vhs_audio):
        if not vhs_audio or not vhs_audio():
            raise Exception("audio input is not valid")
        args = [ffmpeg_path, "-i", '-']
        try:
            res =  subprocess.run(args + ["-f", "f32le", "-"], input=vhs_audio(),
                                  capture_output=True, check=True)
            audio = torch.frombuffer(bytearray(res.stdout), dtype=torch.float32)
        except subprocess.CalledProcessError as e:
            raise Exception("An error occured in the ffmpeg subprocess:\n" \
                    + e.stderr.decode("utf-8"))
        match = re.search(', (\\d+) Hz, (\\w+), ',res.stderr.decode('utf-8'))
        if match:
            ar = int(match.group(1))
            #NOTE: Just throwing an error for other channel types right now
            #Will deal with issues if they come
            ac = {"mono": 1, "stereo": 2}[match.group(2)]
        else:
            ar = 44100
            ac = 2
        audio = audio.reshape((-1,ac)).transpose(0,1).unsqueeze(0)
        return ({'waveform': audio, 'sample_rate': ar},)

class PruneOutputs:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "filenames": ("VHS_FILENAMES",),
                    "options": (["Intermediate", "Intermediate and Utility"],)
                    }
                }

    RETURN_TYPES = ()
    OUTPUT_NODE = True
    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’"
    FUNCTION = "prune_outputs"

    def prune_outputs(self, filenames, options):
        if len(filenames[1]) == 0:
            return ()
        assert(len(filenames[1]) <= 3 and len(filenames[1]) >= 2)
        delete_list = []
        if options in ["Intermediate", "Intermediate and Utility", "All"]:
            delete_list += filenames[1][1:-1]
        if options in ["Intermediate and Utility", "All"]:
            delete_list.append(filenames[1][0])
        if options in ["All"]:
            delete_list.append(filenames[1][-1])

        output_dirs = [os.path.abspath("output"), os.path.abspath("temp")]
        for file in delete_list:
            #Check that path is actually an output directory
            if (os.path.commonpath([output_dirs[0], file]) != output_dirs[0]) \
                    and (os.path.commonpath([output_dirs[1], file]) != output_dirs[1]):
                        raise Exception("Tried to prune output from invalid directory: " + file)
            if os.path.exists(file):
                os.remove(file)
        return ()

class BatchManager:
    def __init__(self, frames_per_batch=-1):
        self.frames_per_batch = frames_per_batch
        self.inputs = {}
        self.outputs = {}
        self.unique_id = None
        self.has_closed_inputs = False
        self.total_frames = float('inf')
    def reset(self):
        self.close_inputs()
        for key in self.outputs:
            if getattr(self.outputs[key][-1], "gi_suspended", False):
                try:
                    self.outputs[key][-1].send(None)
                except StopIteration:
                    pass
        self.__init__(self.frames_per_batch)
    def has_open_inputs(self):
        return len(self.inputs) > 0
    def close_inputs(self):
        for key in self.inputs:
            if getattr(self.inputs[key][-1], "gi_suspended", False):
                try:
                    self.inputs[key][-1].send(1)
                except StopIteration:
                    pass
        self.inputs = {}

    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "frames_per_batch": ("INT", {"default": 16, "min": 1, "max": 128, "step": 1})
                    },
                "hidden": {
                    "prompt": "PROMPT",
                    "unique_id": "UNIQUE_ID"
                },
                }

    RETURN_TYPES = ("VHS_BatchManager",)
    RETURN_NAMES = ("meta_batch",)
    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’"
    FUNCTION = "update_batch"

    def update_batch(self, frames_per_batch, prompt=None, unique_id=None):
        if unique_id is not None and prompt is not None:
            requeue = prompt[unique_id]['inputs'].get('requeue', 0)
        else:
            requeue = 0
        if requeue == 0:
            self.reset()
            self.frames_per_batch = frames_per_batch
            self.unique_id = unique_id
        else:
            num_batches = (self.total_frames+self.frames_per_batch-1)//frames_per_batch
            print(f'Meta-Batch {requeue}/{num_batches}')
        #onExecuted seems to not be called unless some message is sent
        return (self,)


class VideoInfo:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "video_info": ("VHS_VIDEOINFO",),
                    }
                }

    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’"

    RETURN_TYPES = ("FLOAT","INT", "FLOAT", "INT", "INT", "FLOAT","INT", "FLOAT", "INT", "INT")
    RETURN_NAMES = (
        "source_fps🟨",
        "source_frame_count🟨",
        "source_duration🟨",
        "source_width🟨",
        "source_height🟨",
        "loaded_fps🟦",
        "loaded_frame_count🟦",
        "loaded_duration🟦",
        "loaded_width🟦",
        "loaded_height🟦",
    )
    FUNCTION = "get_video_info"

    def get_video_info(self, video_info):
        keys = ["fps", "frame_count", "duration", "width", "height"]
        
        source_info = []
        loaded_info = []

        for key in keys:
            source_info.append(video_info[f"source_{key}"])
            loaded_info.append(video_info[f"loaded_{key}"])

        return (*source_info, *loaded_info)


class VideoInfoSource:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "video_info": ("VHS_VIDEOINFO",),
                    }
                }

    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’"

    RETURN_TYPES = ("FLOAT","INT", "FLOAT", "INT", "INT",)
    RETURN_NAMES = (
        "fps🟨",
        "frame_count🟨",
        "duration🟨",
        "width🟨",
        "height🟨",
    )
    FUNCTION = "get_video_info"

    def get_video_info(self, video_info):
        keys = ["fps", "frame_count", "duration", "width", "height"]
        
        source_info = []

        for key in keys:
            source_info.append(video_info[f"source_{key}"])

        return (*source_info,)


class VideoInfoLoaded:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "video_info": ("VHS_VIDEOINFO",),
                    }
                }

    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’"

    RETURN_TYPES = ("FLOAT","INT", "FLOAT", "INT", "INT",)
    RETURN_NAMES = (
        "fps🟦",
        "frame_count🟦",
        "duration🟦",
        "width🟦",
        "height🟦",
    )
    FUNCTION = "get_video_info"

    def get_video_info(self, video_info):
        keys = ["fps", "frame_count", "duration", "width", "height"]
        
        loaded_info = []

        for key in keys:
            loaded_info.append(video_info[f"loaded_{key}"])

        return (*loaded_info,)

class SelectFilename:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"filenames": ("VHS_FILENAMES",), "index": ("INT", {"default": -1, "step": 1, "min": -1})}}
    RETURN_TYPES = ("STRING",)
    RETURN_NAMES =("Filename",)
    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’"
    FUNCTION = "select_filename"

    def select_filename(self, filenames, index):
        return (filenames[1][index],)
class Unbatch:
    class Any(str):
        def __ne__(self, other):
            return False
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"batched": ("*",)}}
    RETURN_TYPES = (Any('*'),)
    INPUT_IS_LIST = True
    RETURN_NAMES =("unbatched",)
    CATEGORY = "Video Helper Suite πŸŽ₯πŸ…₯πŸ…—πŸ…’"
    FUNCTION = "unbatch"
    EXPERIMENTAL = True
    def unbatch(self, batched):
        if isinstance(batched[0], torch.Tensor):
            return (torch.cat(batched),)
        if isinstance(batched[0], dict):
            out = batched[0].copy()
            out['samples'] = torch.cat([x['samples'] for x in batched])
            out.pop('batch_index', None)
            return (out,)
        return (functools.reduce(lambda x,y: x+y, batched),)
    @classmethod
    def VALIDATE_INPUTS(cls, input_types):
        return True

NODE_CLASS_MAPPINGS = {
    "VHS_VideoCombine": VideoCombine,
    "VHS_LoadVideo": LoadVideoUpload,
    "VHS_LoadVideoPath": LoadVideoPath,
    "VHS_LoadImages": LoadImagesFromDirectoryUpload,
    "VHS_LoadImagesPath": LoadImagesFromDirectoryPath,
    "VHS_LoadAudio": LoadAudio,
    "VHS_LoadAudioUpload": LoadAudioUpload,
    "VHS_AudioToVHSAudio": AudioToVHSAudio,
    "VHS_VHSAudioToAudio": VHSAudioToAudio,
    "VHS_PruneOutputs": PruneOutputs,
    "VHS_BatchManager": BatchManager,
    "VHS_VideoInfo": VideoInfo,
    "VHS_VideoInfoSource": VideoInfoSource,
    "VHS_VideoInfoLoaded": VideoInfoLoaded,
    "VHS_SelectFilename": SelectFilename,
    # Batched Nodes
    "VHS_VAEEncodeBatched": VAEEncodeBatched,
    "VHS_VAEDecodeBatched": VAEDecodeBatched,
    # Latent and Image nodes
    "VHS_SplitLatents": SplitLatents,
    "VHS_SplitImages": SplitImages,
    "VHS_SplitMasks": SplitMasks,
    "VHS_MergeLatents": MergeLatents,
    "VHS_MergeImages": MergeImages,
    "VHS_MergeMasks": MergeMasks,
    "VHS_GetLatentCount": GetLatentCount,
    "VHS_GetImageCount": GetImageCount,
    "VHS_GetMaskCount": GetMaskCount,
    "VHS_DuplicateLatents": RepeatLatents,
    "VHS_DuplicateImages": RepeatImages,
    "VHS_DuplicateMasks": RepeatMasks,
    "VHS_SelectEveryNthLatent": SelectEveryNthLatent,
    "VHS_SelectEveryNthImage": SelectEveryNthImage,
    "VHS_SelectEveryNthMask": SelectEveryNthMask,
    "VHS_SelectLatents": SelectLatents,
    "VHS_SelectImages": SelectImages,
    "VHS_SelectMasks": SelectMasks,
    "VHS_Unbatch": Unbatch,
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "VHS_VideoCombine": "Video Combine πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_LoadVideo": "Load Video (Upload) πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_LoadVideoPath": "Load Video (Path) πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_LoadImages": "Load Images (Upload) πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_LoadImagesPath": "Load Images (Path) πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_LoadAudio": "Load Audio (Path)πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_LoadAudioUpload": "Load Audio (Upload)πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_AudioToVHSAudio": "Audio to legacy VHS_AUDIOπŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_VHSAudioToAudio": "Legacy VHS_AUDIO to AudioπŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_PruneOutputs": "Prune Outputs πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_BatchManager": "Meta Batch Manager πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_VideoInfo": "Video Info πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_VideoInfoSource": "Video Info (Source) πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_VideoInfoLoaded": "Video Info (Loaded) πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_SelectFilename": "Select Filename πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    # Batched Nodes
    "VHS_VAEEncodeBatched": "VAE Encode Batched πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_VAEDecodeBatched": "VAE Decode Batched πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    # Latent and Image nodes
    "VHS_SplitLatents": "Split Latents πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_SplitImages": "Split Images πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_SplitMasks": "Split Masks πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_MergeLatents": "Merge Latents πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_MergeImages": "Merge Images πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_MergeMasks": "Merge Masks πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_GetLatentCount": "Get Latent Count πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_GetImageCount": "Get Image Count πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_GetMaskCount": "Get Mask Count πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_DuplicateLatents": "Repeat Latents πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_DuplicateImages": "Repeat Images πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_DuplicateMasks": "Repeat Masks πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_SelectEveryNthLatent": "Select Every Nth Latent πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_SelectEveryNthImage": "Select Every Nth Image πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_SelectEveryNthMask": "Select Every Nth Mask πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_SelectLatents": "Select Latents πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_SelectImages": "Select Images πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_SelectMasks": "Select Masks πŸŽ₯πŸ…₯πŸ…—πŸ…’",
    "VHS_Unbatch":  "Unbatch πŸŽ₯πŸ…₯πŸ…—πŸ…’",
}