File size: 4,266 Bytes
7eb3676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch

import hashlib
from pathlib import Path
from typing import Iterable

from PIL import Image, ImageOps
import numpy as np

import folder_paths

class LoadImageFromPath:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"image": ("STRING", {"default": r"ComfyUI_00001_-assets\ComfyUI_00001_.png [output]"})},
                }

    CATEGORY = "image"

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = LoadImageFromPath._resolve_path(image)

        i = Image.open(image_path)
        i = ImageOps.exif_transpose(i)
        image = i.convert("RGB")
        image = np.array(image).astype(np.float32) / 255.0
        image = torch.from_numpy(image)[None,]
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)

    def _resolve_path(image) -> Path:
        image_path = Path(folder_paths.get_annotated_filepath(image))
        return image_path

    @classmethod
    def IS_CHANGED(s, image):
        image_path = LoadImageFromPath._resolve_path(image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, image):
        # If image is an output of another node, it will be None during validation
        if image is None:
            return True

        image_path = LoadImageFromPath._resolve_path(image)
        if not image_path.exists():
            return "Invalid image path: {}".format(image_path)

        return True

class PILToImage:
    @classmethod
    def INPUT_TYPES(s):
        return {'required': 
                    {'images': ('PIL_IMAGE', )},
                }

    RETURN_TYPES = ('IMAGE',)
    FUNCTION = 'pil_images_to_images'

    CATEGORY = 'image/PIL'

    def pil_images_to_images(images: Iterable[Image.Image]) -> torch.Tensor:
        pil_images = images

        images = []
        for pil_image in pil_images:
            i = pil_image
            i = ImageOps.exif_transpose(i)
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            images.append(image)
        
        if len(images) > 1:
            images = torch.cat(images, dim=0)
        else:
            images = images[0]

        return (images,)

class PILToMask:
    @classmethod
    def INPUT_TYPES(s):
        return {'required': 
                    {'images': ('PIL_IMAGE', )},
                }

    RETURN_TYPES = ('IMAGE',)
    FUNCTION = 'pil_images_to_masks'

    CATEGORY = 'image/PIL'

    def pil_images_to_masks(images: Iterable[Image.Image]) -> torch.Tensor:
        pil_images = images

        masks = []
        for pil_image in pil_images:
            i = pil_image
            i = ImageOps.exif_transpose(i)
            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
            if 'A' in i.getbands():
                mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
                mask = 1. - torch.from_numpy(mask)
            else:
                mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
            masks.append(mask)
        
        if len(masks) > 1:
            masks = torch.cat(masks, dim=0)
        else:
            masks = masks[0]

        return (masks,)

class ImageToPIL:
    @classmethod
    def INPUT_TYPES(s):
        return {'required': 
                    {'images': ('IMAGE', )},
                }

    RETURN_TYPES = ('PIL_IMAGE',)
    FUNCTION = 'images_to_pil_images'

    CATEGORY = 'image/PIL'

    def images_to_pil_images(self, images: torch.Tensor) -> list[Image.Image]:
        pil_images = []
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
            pil_images.append(img)
        return (pil_images,)