miugod commited on
Commit
faacb4b
·
1 Parent(s): e378cdc

fintune bibert on iwslt14 ende with mlm task

Browse files
README.md CHANGED
@@ -1,3 +1,58 @@
1
  ---
2
- license: openrail
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: bibert-ende
8
+ results: []
9
  ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # bibert-ende
15
+
16
+ This model is a fine-tuned version of [jhu-clsp/bibert-ende](https://huggingface.co/jhu-clsp/bibert-ende) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.8713
19
+ - Accuracy: 0.6310
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 32
40
+ - eval_batch_size: 32
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 128
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 3.0
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+
52
+
53
+ ### Framework versions
54
+
55
+ - Transformers 4.28.0.dev0
56
+ - Pytorch 1.12.0+cu113
57
+ - Datasets 2.10.1
58
+ - Tokenizers 0.13.2
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.631046900996146,
4
+ "eval_loss": 1.871326208114624,
5
+ "eval_runtime": 14.0466,
6
+ "eval_samples": 14566,
7
+ "eval_samples_per_second": 1036.979,
8
+ "eval_steps_per_second": 32.463,
9
+ "perplexity": 6.496906939043341,
10
+ "train_loss": 1.378044397486057,
11
+ "train_runtime": 6661.4989,
12
+ "train_samples": 640956,
13
+ "train_samples_per_second": 288.654,
14
+ "train_steps_per_second": 2.255
15
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jhu-clsp/bibert-ende",
3
+ "architectures": [
4
+ "RobertaForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 3,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 513,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 0,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.28.0.dev0",
25
+ "type_vocab_size": 2,
26
+ "unk_token_id": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 52000
29
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.631046900996146,
4
+ "eval_loss": 1.871326208114624,
5
+ "eval_runtime": 14.0466,
6
+ "eval_samples": 14566,
7
+ "eval_samples_per_second": 1036.979,
8
+ "eval_steps_per_second": 32.463,
9
+ "perplexity": 6.496906939043341
10
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:916b8491f6341336eecde8e2bb78bf0db51ba47d063a9b65e05d8f3af50d982f
3
+ size 504198571
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 1000000000000000019884624838656,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "special_tokens_map_file": null,
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "BertTokenizer",
15
+ "tokenizer_file": null,
16
+ "unk_token": "[UNK]"
17
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 1.378044397486057,
4
+ "train_runtime": 6661.4989,
5
+ "train_samples": 640956,
6
+ "train_samples_per_second": 288.654,
7
+ "train_steps_per_second": 2.255
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.999700449326011,
5
+ "global_step": 15021,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.1,
12
+ "learning_rate": 4.8338992077757805e-05,
13
+ "loss": 2.2639,
14
+ "step": 500
15
+ },
16
+ {
17
+ "epoch": 0.2,
18
+ "learning_rate": 4.667465548232475e-05,
19
+ "loss": 1.7816,
20
+ "step": 1000
21
+ },
22
+ {
23
+ "epoch": 0.3,
24
+ "learning_rate": 4.501031888689169e-05,
25
+ "loss": 1.6597,
26
+ "step": 1500
27
+ },
28
+ {
29
+ "epoch": 0.4,
30
+ "learning_rate": 4.334598229145863e-05,
31
+ "loss": 1.5932,
32
+ "step": 2000
33
+ },
34
+ {
35
+ "epoch": 0.5,
36
+ "learning_rate": 4.168164569602557e-05,
37
+ "loss": 1.5107,
38
+ "step": 2500
39
+ },
40
+ {
41
+ "epoch": 0.6,
42
+ "learning_rate": 4.0017309100592506e-05,
43
+ "loss": 1.4919,
44
+ "step": 3000
45
+ },
46
+ {
47
+ "epoch": 0.7,
48
+ "learning_rate": 3.8352972505159445e-05,
49
+ "loss": 1.4724,
50
+ "step": 3500
51
+ },
52
+ {
53
+ "epoch": 0.8,
54
+ "learning_rate": 3.6688635909726384e-05,
55
+ "loss": 1.43,
56
+ "step": 4000
57
+ },
58
+ {
59
+ "epoch": 0.9,
60
+ "learning_rate": 3.502429931429332e-05,
61
+ "loss": 1.4131,
62
+ "step": 4500
63
+ },
64
+ {
65
+ "epoch": 1.0,
66
+ "learning_rate": 3.336329139205113e-05,
67
+ "loss": 1.3983,
68
+ "step": 5000
69
+ },
70
+ {
71
+ "epoch": 1.1,
72
+ "learning_rate": 3.169895479661807e-05,
73
+ "loss": 1.3639,
74
+ "step": 5500
75
+ },
76
+ {
77
+ "epoch": 1.2,
78
+ "learning_rate": 3.003461820118501e-05,
79
+ "loss": 1.3449,
80
+ "step": 6000
81
+ },
82
+ {
83
+ "epoch": 1.3,
84
+ "learning_rate": 2.8370281605751946e-05,
85
+ "loss": 1.3259,
86
+ "step": 6500
87
+ },
88
+ {
89
+ "epoch": 1.4,
90
+ "learning_rate": 2.6709273683509755e-05,
91
+ "loss": 1.3239,
92
+ "step": 7000
93
+ },
94
+ {
95
+ "epoch": 1.5,
96
+ "learning_rate": 2.504493708807669e-05,
97
+ "loss": 1.3131,
98
+ "step": 7500
99
+ },
100
+ {
101
+ "epoch": 1.6,
102
+ "learning_rate": 2.3380600492643633e-05,
103
+ "loss": 1.3052,
104
+ "step": 8000
105
+ },
106
+ {
107
+ "epoch": 1.7,
108
+ "learning_rate": 2.1716263897210572e-05,
109
+ "loss": 1.2947,
110
+ "step": 8500
111
+ },
112
+ {
113
+ "epoch": 1.8,
114
+ "learning_rate": 2.0058584648159245e-05,
115
+ "loss": 1.2927,
116
+ "step": 9000
117
+ },
118
+ {
119
+ "epoch": 1.9,
120
+ "learning_rate": 1.8394248052726184e-05,
121
+ "loss": 1.2736,
122
+ "step": 9500
123
+ },
124
+ {
125
+ "epoch": 2.0,
126
+ "learning_rate": 1.6729911457293123e-05,
127
+ "loss": 1.265,
128
+ "step": 10000
129
+ },
130
+ {
131
+ "epoch": 2.1,
132
+ "learning_rate": 1.5065574861860063e-05,
133
+ "loss": 1.2467,
134
+ "step": 10500
135
+ },
136
+ {
137
+ "epoch": 2.2,
138
+ "learning_rate": 1.3401238266427002e-05,
139
+ "loss": 1.2387,
140
+ "step": 11000
141
+ },
142
+ {
143
+ "epoch": 2.3,
144
+ "learning_rate": 1.1736901670993943e-05,
145
+ "loss": 1.2283,
146
+ "step": 11500
147
+ },
148
+ {
149
+ "epoch": 2.4,
150
+ "learning_rate": 1.0072565075560882e-05,
151
+ "loss": 1.2271,
152
+ "step": 12000
153
+ },
154
+ {
155
+ "epoch": 2.5,
156
+ "learning_rate": 8.408228480127821e-06,
157
+ "loss": 1.2382,
158
+ "step": 12500
159
+ },
160
+ {
161
+ "epoch": 2.6,
162
+ "learning_rate": 6.7438918846947615e-06,
163
+ "loss": 1.2197,
164
+ "step": 13000
165
+ },
166
+ {
167
+ "epoch": 2.7,
168
+ "learning_rate": 5.0795552892617005e-06,
169
+ "loss": 1.217,
170
+ "step": 13500
171
+ },
172
+ {
173
+ "epoch": 2.8,
174
+ "learning_rate": 3.4152186938286403e-06,
175
+ "loss": 1.2096,
176
+ "step": 14000
177
+ },
178
+ {
179
+ "epoch": 2.9,
180
+ "learning_rate": 1.7508820983955797e-06,
181
+ "loss": 1.2048,
182
+ "step": 14500
183
+ },
184
+ {
185
+ "epoch": 3.0,
186
+ "learning_rate": 8.654550296251915e-08,
187
+ "loss": 1.2008,
188
+ "step": 15000
189
+ },
190
+ {
191
+ "epoch": 3.0,
192
+ "step": 15021,
193
+ "total_flos": 1.1987319801621504e+17,
194
+ "train_loss": 1.378044397486057,
195
+ "train_runtime": 6661.4989,
196
+ "train_samples_per_second": 288.654,
197
+ "train_steps_per_second": 2.255
198
+ }
199
+ ],
200
+ "max_steps": 15021,
201
+ "num_train_epochs": 3,
202
+ "total_flos": 1.1987319801621504e+17,
203
+ "trial_name": null,
204
+ "trial_params": null
205
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff