aamirshakir commited on
Commit
b00f33d
·
0 Parent(s):

Initial commit

Browse files
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1868 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ base_model: mixedbread-ai/mxbai-embed-mini-v1
5
+ library_name: sentence-transformers
6
+ model-index:
7
+ - name: mxbai-embed-xsmall-v1
8
+ results:
9
+ - task:
10
+ type: Retrieval
11
+ dataset:
12
+ type: arguana
13
+ name: MTEB ArguAna
14
+ config: default
15
+ split: test
16
+ revision: None
17
+ metrics:
18
+ - type: ndcg_at_1
19
+ value: 25.18
20
+ - type: ndcg_at_3
21
+ value: 39.22
22
+ - type: ndcg_at_5
23
+ value: 43.93
24
+ - type: ndcg_at_10
25
+ value: 49.58
26
+ - type: ndcg_at_30
27
+ value: 53.41
28
+ - type: ndcg_at_100
29
+ value: 54.11
30
+ - type: map_at_1
31
+ value: 25.18
32
+ - type: map_at_3
33
+ value: 35.66
34
+ - type: map_at_5
35
+ value: 38.25
36
+ - type: map_at_10
37
+ value: 40.58
38
+ - type: map_at_30
39
+ value: 41.6
40
+ - type: map_at_100
41
+ value: 41.69
42
+ - type: recall_at_1
43
+ value: 25.18
44
+ - type: recall_at_3
45
+ value: 49.57
46
+ - type: recall_at_5
47
+ value: 61.09
48
+ - type: recall_at_10
49
+ value: 78.59
50
+ - type: recall_at_30
51
+ value: 94.03
52
+ - type: recall_at_100
53
+ value: 97.94
54
+ - type: precision_at_1
55
+ value: 25.18
56
+ - type: precision_at_3
57
+ value: 16.52
58
+ - type: precision_at_5
59
+ value: 12.22
60
+ - type: precision_at_10
61
+ value: 7.86
62
+ - type: precision_at_30
63
+ value: 3.13
64
+ - type: precision_at_100
65
+ value: 0.98
66
+ - type: accuracy_at_3
67
+ value: 49.57
68
+ - type: accuracy_at_5
69
+ value: 61.09
70
+ - type: accuracy_at_10
71
+ value: 78.59
72
+ - task:
73
+ type: Retrieval
74
+ dataset:
75
+ type: BeIR/cqadupstack
76
+ name: MTEB CQADupstackAndroidRetrieval
77
+ config: default
78
+ split: test
79
+ revision: None
80
+ metrics:
81
+ - type: ndcg_at_1
82
+ value: 44.35
83
+ - type: ndcg_at_3
84
+ value: 49.64
85
+ - type: ndcg_at_5
86
+ value: 51.73
87
+ - type: ndcg_at_10
88
+ value: 54.82
89
+ - type: ndcg_at_30
90
+ value: 57.64
91
+ - type: ndcg_at_100
92
+ value: 59.77
93
+ - type: map_at_1
94
+ value: 36.26
95
+ - type: map_at_3
96
+ value: 44.35
97
+ - type: map_at_5
98
+ value: 46.26
99
+ - type: map_at_10
100
+ value: 48.24
101
+ - type: map_at_30
102
+ value: 49.34
103
+ - type: map_at_100
104
+ value: 49.75
105
+ - type: recall_at_1
106
+ value: 36.26
107
+ - type: recall_at_3
108
+ value: 51.46
109
+ - type: recall_at_5
110
+ value: 57.78
111
+ - type: recall_at_10
112
+ value: 66.5
113
+ - type: recall_at_30
114
+ value: 77.19
115
+ - type: recall_at_100
116
+ value: 87.53
117
+ - type: precision_at_1
118
+ value: 44.35
119
+ - type: precision_at_3
120
+ value: 23.65
121
+ - type: precision_at_5
122
+ value: 16.88
123
+ - type: precision_at_10
124
+ value: 10.7
125
+ - type: precision_at_30
126
+ value: 4.53
127
+ - type: precision_at_100
128
+ value: 1.65
129
+ - type: accuracy_at_3
130
+ value: 60.51
131
+ - type: accuracy_at_5
132
+ value: 67.67
133
+ - type: accuracy_at_10
134
+ value: 74.68
135
+ - task:
136
+ type: Retrieval
137
+ dataset:
138
+ type: BeIR/cqadupstack
139
+ name: MTEB CQADupstackEnglishRetrieval
140
+ config: default
141
+ split: test
142
+ revision: None
143
+ metrics:
144
+ - type: ndcg_at_1
145
+ value: 39.43
146
+ - type: ndcg_at_3
147
+ value: 44.13
148
+ - type: ndcg_at_5
149
+ value: 46.06
150
+ - type: ndcg_at_10
151
+ value: 48.31
152
+ - type: ndcg_at_30
153
+ value: 51.06
154
+ - type: ndcg_at_100
155
+ value: 53.07
156
+ - type: map_at_1
157
+ value: 31.27
158
+ - type: map_at_3
159
+ value: 39.07
160
+ - type: map_at_5
161
+ value: 40.83
162
+ - type: map_at_10
163
+ value: 42.23
164
+ - type: map_at_30
165
+ value: 43.27
166
+ - type: map_at_100
167
+ value: 43.66
168
+ - type: recall_at_1
169
+ value: 31.27
170
+ - type: recall_at_3
171
+ value: 45.89
172
+ - type: recall_at_5
173
+ value: 51.44
174
+ - type: recall_at_10
175
+ value: 58.65
176
+ - type: recall_at_30
177
+ value: 69.12
178
+ - type: recall_at_100
179
+ value: 78.72
180
+ - type: precision_at_1
181
+ value: 39.43
182
+ - type: precision_at_3
183
+ value: 21.61
184
+ - type: precision_at_5
185
+ value: 15.34
186
+ - type: precision_at_10
187
+ value: 9.27
188
+ - type: precision_at_30
189
+ value: 4.01
190
+ - type: precision_at_100
191
+ value: 1.52
192
+ - type: accuracy_at_3
193
+ value: 55.48
194
+ - type: accuracy_at_5
195
+ value: 60.76
196
+ - type: accuracy_at_10
197
+ value: 67.45
198
+ - task:
199
+ type: Retrieval
200
+ dataset:
201
+ type: BeIR/cqadupstack
202
+ name: MTEB CQADupstackGamingRetrieval
203
+ config: default
204
+ split: test
205
+ revision: None
206
+ metrics:
207
+ - type: ndcg_at_1
208
+ value: 45.58
209
+ - type: ndcg_at_3
210
+ value: 52.68
211
+ - type: ndcg_at_5
212
+ value: 55.28
213
+ - type: ndcg_at_10
214
+ value: 57.88
215
+ - type: ndcg_at_30
216
+ value: 60.6
217
+ - type: ndcg_at_100
218
+ value: 62.03
219
+ - type: map_at_1
220
+ value: 39.97
221
+ - type: map_at_3
222
+ value: 49.06
223
+ - type: map_at_5
224
+ value: 50.87
225
+ - type: map_at_10
226
+ value: 52.2
227
+ - type: map_at_30
228
+ value: 53.06
229
+ - type: map_at_100
230
+ value: 53.28
231
+ - type: recall_at_1
232
+ value: 39.97
233
+ - type: recall_at_3
234
+ value: 57.4
235
+ - type: recall_at_5
236
+ value: 63.83
237
+ - type: recall_at_10
238
+ value: 71.33
239
+ - type: recall_at_30
240
+ value: 81.81
241
+ - type: recall_at_100
242
+ value: 89.0
243
+ - type: precision_at_1
244
+ value: 45.58
245
+ - type: precision_at_3
246
+ value: 23.55
247
+ - type: precision_at_5
248
+ value: 16.01
249
+ - type: precision_at_10
250
+ value: 9.25
251
+ - type: precision_at_30
252
+ value: 3.67
253
+ - type: precision_at_100
254
+ value: 1.23
255
+ - type: accuracy_at_3
256
+ value: 62.76
257
+ - type: accuracy_at_5
258
+ value: 68.84
259
+ - type: accuracy_at_10
260
+ value: 75.8
261
+ - task:
262
+ type: Retrieval
263
+ dataset:
264
+ type: BeIR/cqadupstack
265
+ name: MTEB CQADupstackGisRetrieval
266
+ config: default
267
+ split: test
268
+ revision: None
269
+ metrics:
270
+ - type: ndcg_at_1
271
+ value: 27.35
272
+ - type: ndcg_at_3
273
+ value: 34.23
274
+ - type: ndcg_at_5
275
+ value: 37.1
276
+ - type: ndcg_at_10
277
+ value: 40.26
278
+ - type: ndcg_at_30
279
+ value: 43.54
280
+ - type: ndcg_at_100
281
+ value: 45.9
282
+ - type: map_at_1
283
+ value: 25.28
284
+ - type: map_at_3
285
+ value: 31.68
286
+ - type: map_at_5
287
+ value: 33.38
288
+ - type: map_at_10
289
+ value: 34.79
290
+ - type: map_at_30
291
+ value: 35.67
292
+ - type: map_at_100
293
+ value: 35.96
294
+ - type: recall_at_1
295
+ value: 25.28
296
+ - type: recall_at_3
297
+ value: 38.95
298
+ - type: recall_at_5
299
+ value: 45.82
300
+ - type: recall_at_10
301
+ value: 55.11
302
+ - type: recall_at_30
303
+ value: 68.13
304
+ - type: recall_at_100
305
+ value: 80.88
306
+ - type: precision_at_1
307
+ value: 27.35
308
+ - type: precision_at_3
309
+ value: 14.65
310
+ - type: precision_at_5
311
+ value: 10.44
312
+ - type: precision_at_10
313
+ value: 6.37
314
+ - type: precision_at_30
315
+ value: 2.65
316
+ - type: precision_at_100
317
+ value: 0.97
318
+ - type: accuracy_at_3
319
+ value: 42.15
320
+ - type: accuracy_at_5
321
+ value: 49.15
322
+ - type: accuracy_at_10
323
+ value: 58.53
324
+ - task:
325
+ type: Retrieval
326
+ dataset:
327
+ type: BeIR/cqadupstack
328
+ name: MTEB CQADupstackMathematicaRetrieval
329
+ config: default
330
+ split: test
331
+ revision: None
332
+ metrics:
333
+ - type: ndcg_at_1
334
+ value: 18.91
335
+ - type: ndcg_at_3
336
+ value: 24.37
337
+ - type: ndcg_at_5
338
+ value: 26.11
339
+ - type: ndcg_at_10
340
+ value: 29.37
341
+ - type: ndcg_at_30
342
+ value: 33.22
343
+ - type: ndcg_at_100
344
+ value: 35.73
345
+ - type: map_at_1
346
+ value: 15.23
347
+ - type: map_at_3
348
+ value: 21.25
349
+ - type: map_at_5
350
+ value: 22.38
351
+ - type: map_at_10
352
+ value: 23.86
353
+ - type: map_at_30
354
+ value: 24.91
355
+ - type: map_at_100
356
+ value: 25.24
357
+ - type: recall_at_1
358
+ value: 15.23
359
+ - type: recall_at_3
360
+ value: 28.28
361
+ - type: recall_at_5
362
+ value: 32.67
363
+ - type: recall_at_10
364
+ value: 42.23
365
+ - type: recall_at_30
366
+ value: 56.87
367
+ - type: recall_at_100
368
+ value: 69.44
369
+ - type: precision_at_1
370
+ value: 18.91
371
+ - type: precision_at_3
372
+ value: 11.9
373
+ - type: precision_at_5
374
+ value: 8.48
375
+ - type: precision_at_10
376
+ value: 5.63
377
+ - type: precision_at_30
378
+ value: 2.64
379
+ - type: precision_at_100
380
+ value: 1.02
381
+ - type: accuracy_at_3
382
+ value: 33.95
383
+ - type: accuracy_at_5
384
+ value: 38.81
385
+ - type: accuracy_at_10
386
+ value: 49.13
387
+ - task:
388
+ type: Retrieval
389
+ dataset:
390
+ type: BeIR/cqadupstack
391
+ name: MTEB CQADupstackPhysicsRetrieval
392
+ config: default
393
+ split: test
394
+ revision: None
395
+ metrics:
396
+ - type: ndcg_at_1
397
+ value: 36.96
398
+ - type: ndcg_at_3
399
+ value: 42.48
400
+ - type: ndcg_at_5
401
+ value: 44.57
402
+ - type: ndcg_at_10
403
+ value: 47.13
404
+ - type: ndcg_at_30
405
+ value: 50.65
406
+ - type: ndcg_at_100
407
+ value: 53.14
408
+ - type: map_at_1
409
+ value: 30.1
410
+ - type: map_at_3
411
+ value: 37.97
412
+ - type: map_at_5
413
+ value: 39.62
414
+ - type: map_at_10
415
+ value: 41.06
416
+ - type: map_at_30
417
+ value: 42.13
418
+ - type: map_at_100
419
+ value: 42.53
420
+ - type: recall_at_1
421
+ value: 30.1
422
+ - type: recall_at_3
423
+ value: 45.98
424
+ - type: recall_at_5
425
+ value: 51.58
426
+ - type: recall_at_10
427
+ value: 59.24
428
+ - type: recall_at_30
429
+ value: 72.47
430
+ - type: recall_at_100
431
+ value: 84.53
432
+ - type: precision_at_1
433
+ value: 36.96
434
+ - type: precision_at_3
435
+ value: 20.5
436
+ - type: precision_at_5
437
+ value: 14.4
438
+ - type: precision_at_10
439
+ value: 8.62
440
+ - type: precision_at_30
441
+ value: 3.67
442
+ - type: precision_at_100
443
+ value: 1.38
444
+ - type: accuracy_at_3
445
+ value: 54.09
446
+ - type: accuracy_at_5
447
+ value: 60.25
448
+ - type: accuracy_at_10
449
+ value: 67.37
450
+ - task:
451
+ type: Retrieval
452
+ dataset:
453
+ type: BeIR/cqadupstack
454
+ name: MTEB CQADupstackProgrammersRetrieval
455
+ config: default
456
+ split: test
457
+ revision: None
458
+ metrics:
459
+ - type: ndcg_at_1
460
+ value: 28.65
461
+ - type: ndcg_at_3
462
+ value: 34.3
463
+ - type: ndcg_at_5
464
+ value: 36.8
465
+ - type: ndcg_at_10
466
+ value: 39.92
467
+ - type: ndcg_at_30
468
+ value: 42.97
469
+ - type: ndcg_at_100
470
+ value: 45.45
471
+ - type: map_at_1
472
+ value: 23.35
473
+ - type: map_at_3
474
+ value: 30.36
475
+ - type: map_at_5
476
+ value: 32.15
477
+ - type: map_at_10
478
+ value: 33.74
479
+ - type: map_at_30
480
+ value: 34.69
481
+ - type: map_at_100
482
+ value: 35.02
483
+ - type: recall_at_1
484
+ value: 23.35
485
+ - type: recall_at_3
486
+ value: 37.71
487
+ - type: recall_at_5
488
+ value: 44.23
489
+ - type: recall_at_10
490
+ value: 53.6
491
+ - type: recall_at_30
492
+ value: 64.69
493
+ - type: recall_at_100
494
+ value: 77.41
495
+ - type: precision_at_1
496
+ value: 28.65
497
+ - type: precision_at_3
498
+ value: 16.74
499
+ - type: precision_at_5
500
+ value: 12.21
501
+ - type: precision_at_10
502
+ value: 7.61
503
+ - type: precision_at_30
504
+ value: 3.29
505
+ - type: precision_at_100
506
+ value: 1.22
507
+ - type: accuracy_at_3
508
+ value: 44.86
509
+ - type: accuracy_at_5
510
+ value: 52.4
511
+ - type: accuracy_at_10
512
+ value: 61.07
513
+ - task:
514
+ type: Retrieval
515
+ dataset:
516
+ type: BeIR/cqadupstack
517
+ name: MTEB CQADupstackStatsRetrieval
518
+ config: default
519
+ split: test
520
+ revision: None
521
+ metrics:
522
+ - type: ndcg_at_1
523
+ value: 26.07
524
+ - type: ndcg_at_3
525
+ value: 31.62
526
+ - type: ndcg_at_5
527
+ value: 33.23
528
+ - type: ndcg_at_10
529
+ value: 35.62
530
+ - type: ndcg_at_30
531
+ value: 38.41
532
+ - type: ndcg_at_100
533
+ value: 40.81
534
+ - type: map_at_1
535
+ value: 22.96
536
+ - type: map_at_3
537
+ value: 28.85
538
+ - type: map_at_5
539
+ value: 29.97
540
+ - type: map_at_10
541
+ value: 31.11
542
+ - type: map_at_30
543
+ value: 31.86
544
+ - type: map_at_100
545
+ value: 32.15
546
+ - type: recall_at_1
547
+ value: 22.96
548
+ - type: recall_at_3
549
+ value: 35.14
550
+ - type: recall_at_5
551
+ value: 39.22
552
+ - type: recall_at_10
553
+ value: 46.52
554
+ - type: recall_at_30
555
+ value: 57.58
556
+ - type: recall_at_100
557
+ value: 70.57
558
+ - type: precision_at_1
559
+ value: 26.07
560
+ - type: precision_at_3
561
+ value: 14.11
562
+ - type: precision_at_5
563
+ value: 9.69
564
+ - type: precision_at_10
565
+ value: 5.81
566
+ - type: precision_at_30
567
+ value: 2.45
568
+ - type: precision_at_100
569
+ value: 0.92
570
+ - type: accuracy_at_3
571
+ value: 39.42
572
+ - type: accuracy_at_5
573
+ value: 43.41
574
+ - type: accuracy_at_10
575
+ value: 50.92
576
+ - task:
577
+ type: Retrieval
578
+ dataset:
579
+ type: BeIR/cqadupstack
580
+ name: MTEB CQADupstackTexRetrieval
581
+ config: default
582
+ split: test
583
+ revision: None
584
+ metrics:
585
+ - type: ndcg_at_1
586
+ value: 21.78
587
+ - type: ndcg_at_3
588
+ value: 25.74
589
+ - type: ndcg_at_5
590
+ value: 27.86
591
+ - type: ndcg_at_10
592
+ value: 30.3
593
+ - type: ndcg_at_30
594
+ value: 33.51
595
+ - type: ndcg_at_100
596
+ value: 36.12
597
+ - type: map_at_1
598
+ value: 17.63
599
+ - type: map_at_3
600
+ value: 22.7
601
+ - type: map_at_5
602
+ value: 24.14
603
+ - type: map_at_10
604
+ value: 25.31
605
+ - type: map_at_30
606
+ value: 26.22
607
+ - type: map_at_100
608
+ value: 26.56
609
+ - type: recall_at_1
610
+ value: 17.63
611
+ - type: recall_at_3
612
+ value: 28.37
613
+ - type: recall_at_5
614
+ value: 33.99
615
+ - type: recall_at_10
616
+ value: 41.23
617
+ - type: recall_at_30
618
+ value: 53.69
619
+ - type: recall_at_100
620
+ value: 67.27
621
+ - type: precision_at_1
622
+ value: 21.78
623
+ - type: precision_at_3
624
+ value: 12.41
625
+ - type: precision_at_5
626
+ value: 9.07
627
+ - type: precision_at_10
628
+ value: 5.69
629
+ - type: precision_at_30
630
+ value: 2.61
631
+ - type: precision_at_100
632
+ value: 1.03
633
+ - type: accuracy_at_3
634
+ value: 33.62
635
+ - type: accuracy_at_5
636
+ value: 39.81
637
+ - type: accuracy_at_10
638
+ value: 47.32
639
+ - task:
640
+ type: Retrieval
641
+ dataset:
642
+ type: BeIR/cqadupstack
643
+ name: MTEB CQADupstackUnixRetrieval
644
+ config: default
645
+ split: test
646
+ revision: None
647
+ metrics:
648
+ - type: ndcg_at_1
649
+ value: 30.97
650
+ - type: ndcg_at_3
651
+ value: 36.13
652
+ - type: ndcg_at_5
653
+ value: 39.0
654
+ - type: ndcg_at_10
655
+ value: 41.78
656
+ - type: ndcg_at_30
657
+ value: 44.96
658
+ - type: ndcg_at_100
659
+ value: 47.52
660
+ - type: map_at_1
661
+ value: 26.05
662
+ - type: map_at_3
663
+ value: 32.77
664
+ - type: map_at_5
665
+ value: 34.6
666
+ - type: map_at_10
667
+ value: 35.93
668
+ - type: map_at_30
669
+ value: 36.88
670
+ - type: map_at_100
671
+ value: 37.22
672
+ - type: recall_at_1
673
+ value: 26.05
674
+ - type: recall_at_3
675
+ value: 40.0
676
+ - type: recall_at_5
677
+ value: 47.34
678
+ - type: recall_at_10
679
+ value: 55.34
680
+ - type: recall_at_30
681
+ value: 67.08
682
+ - type: recall_at_100
683
+ value: 80.2
684
+ - type: precision_at_1
685
+ value: 30.97
686
+ - type: precision_at_3
687
+ value: 16.6
688
+ - type: precision_at_5
689
+ value: 12.03
690
+ - type: precision_at_10
691
+ value: 7.3
692
+ - type: precision_at_30
693
+ value: 3.08
694
+ - type: precision_at_100
695
+ value: 1.15
696
+ - type: accuracy_at_3
697
+ value: 45.62
698
+ - type: accuracy_at_5
699
+ value: 53.64
700
+ - type: accuracy_at_10
701
+ value: 61.66
702
+ - task:
703
+ type: Retrieval
704
+ dataset:
705
+ type: BeIR/cqadupstack
706
+ name: MTEB CQADupstackWebmastersRetrieval
707
+ config: default
708
+ split: test
709
+ revision: None
710
+ metrics:
711
+ - type: ndcg_at_1
712
+ value: 29.64
713
+ - type: ndcg_at_3
714
+ value: 35.49
715
+ - type: ndcg_at_5
716
+ value: 37.77
717
+ - type: ndcg_at_10
718
+ value: 40.78
719
+ - type: ndcg_at_30
720
+ value: 44.59
721
+ - type: ndcg_at_100
722
+ value: 46.97
723
+ - type: map_at_1
724
+ value: 24.77
725
+ - type: map_at_3
726
+ value: 31.33
727
+ - type: map_at_5
728
+ value: 32.95
729
+ - type: map_at_10
730
+ value: 34.47
731
+ - type: map_at_30
732
+ value: 35.7
733
+ - type: map_at_100
734
+ value: 36.17
735
+ - type: recall_at_1
736
+ value: 24.77
737
+ - type: recall_at_3
738
+ value: 38.16
739
+ - type: recall_at_5
740
+ value: 44.1
741
+ - type: recall_at_10
742
+ value: 53.31
743
+ - type: recall_at_30
744
+ value: 68.43
745
+ - type: recall_at_100
746
+ value: 80.24
747
+ - type: precision_at_1
748
+ value: 29.64
749
+ - type: precision_at_3
750
+ value: 16.8
751
+ - type: precision_at_5
752
+ value: 12.21
753
+ - type: precision_at_10
754
+ value: 7.83
755
+ - type: precision_at_30
756
+ value: 3.89
757
+ - type: precision_at_100
758
+ value: 1.63
759
+ - type: accuracy_at_3
760
+ value: 45.45
761
+ - type: accuracy_at_5
762
+ value: 51.58
763
+ - type: accuracy_at_10
764
+ value: 61.07
765
+ - task:
766
+ type: Retrieval
767
+ dataset:
768
+ type: BeIR/cqadupstack
769
+ name: MTEB CQADupstackWordpressRetrieval
770
+ config: default
771
+ split: test
772
+ revision: None
773
+ metrics:
774
+ - type: ndcg_at_1
775
+ value: 23.47
776
+ - type: ndcg_at_3
777
+ value: 27.98
778
+ - type: ndcg_at_5
779
+ value: 30.16
780
+ - type: ndcg_at_10
781
+ value: 32.97
782
+ - type: ndcg_at_30
783
+ value: 36.3
784
+ - type: ndcg_at_100
785
+ value: 38.47
786
+ - type: map_at_1
787
+ value: 21.63
788
+ - type: map_at_3
789
+ value: 26.02
790
+ - type: map_at_5
791
+ value: 27.32
792
+ - type: map_at_10
793
+ value: 28.51
794
+ - type: map_at_30
795
+ value: 29.39
796
+ - type: map_at_100
797
+ value: 29.66
798
+ - type: recall_at_1
799
+ value: 21.63
800
+ - type: recall_at_3
801
+ value: 31.47
802
+ - type: recall_at_5
803
+ value: 36.69
804
+ - type: recall_at_10
805
+ value: 44.95
806
+ - type: recall_at_30
807
+ value: 58.2
808
+ - type: recall_at_100
809
+ value: 69.83
810
+ - type: precision_at_1
811
+ value: 23.47
812
+ - type: precision_at_3
813
+ value: 11.71
814
+ - type: precision_at_5
815
+ value: 8.32
816
+ - type: precision_at_10
817
+ value: 5.23
818
+ - type: precision_at_30
819
+ value: 2.29
820
+ - type: precision_at_100
821
+ value: 0.86
822
+ - type: accuracy_at_3
823
+ value: 34.01
824
+ - type: accuracy_at_5
825
+ value: 39.37
826
+ - type: accuracy_at_10
827
+ value: 48.24
828
+ - task:
829
+ type: Retrieval
830
+ dataset:
831
+ type: climate-fever
832
+ name: MTEB ClimateFEVER
833
+ config: default
834
+ split: test
835
+ revision: None
836
+ metrics:
837
+ - type: ndcg_at_1
838
+ value: 19.8
839
+ - type: ndcg_at_3
840
+ value: 17.93
841
+ - type: ndcg_at_5
842
+ value: 19.39
843
+ - type: ndcg_at_10
844
+ value: 22.42
845
+ - type: ndcg_at_30
846
+ value: 26.79
847
+ - type: ndcg_at_100
848
+ value: 29.84
849
+ - type: map_at_1
850
+ value: 9.09
851
+ - type: map_at_3
852
+ value: 12.91
853
+ - type: map_at_5
854
+ value: 14.12
855
+ - type: map_at_10
856
+ value: 15.45
857
+ - type: map_at_30
858
+ value: 16.73
859
+ - type: map_at_100
860
+ value: 17.21
861
+ - type: recall_at_1
862
+ value: 9.09
863
+ - type: recall_at_3
864
+ value: 16.81
865
+ - type: recall_at_5
866
+ value: 20.9
867
+ - type: recall_at_10
868
+ value: 27.65
869
+ - type: recall_at_30
870
+ value: 41.23
871
+ - type: recall_at_100
872
+ value: 53.57
873
+ - type: precision_at_1
874
+ value: 19.8
875
+ - type: precision_at_3
876
+ value: 13.36
877
+ - type: precision_at_5
878
+ value: 10.33
879
+ - type: precision_at_10
880
+ value: 7.15
881
+ - type: precision_at_30
882
+ value: 3.66
883
+ - type: precision_at_100
884
+ value: 1.49
885
+ - type: accuracy_at_3
886
+ value: 36.22
887
+ - type: accuracy_at_5
888
+ value: 44.1
889
+ - type: accuracy_at_10
890
+ value: 55.11
891
+ - task:
892
+ type: Retrieval
893
+ dataset:
894
+ type: dbpedia-entity
895
+ name: MTEB DBPedia
896
+ config: default
897
+ split: test
898
+ revision: None
899
+ metrics:
900
+ - type: ndcg_at_1
901
+ value: 42.75
902
+ - type: ndcg_at_3
903
+ value: 35.67
904
+ - type: ndcg_at_5
905
+ value: 33.58
906
+ - type: ndcg_at_10
907
+ value: 32.19
908
+ - type: ndcg_at_30
909
+ value: 31.82
910
+ - type: ndcg_at_100
911
+ value: 35.87
912
+ - type: map_at_1
913
+ value: 7.05
914
+ - type: map_at_3
915
+ value: 10.5
916
+ - type: map_at_5
917
+ value: 12.06
918
+ - type: map_at_10
919
+ value: 14.29
920
+ - type: map_at_30
921
+ value: 17.38
922
+ - type: map_at_100
923
+ value: 19.58
924
+ - type: recall_at_1
925
+ value: 7.05
926
+ - type: recall_at_3
927
+ value: 11.89
928
+ - type: recall_at_5
929
+ value: 14.7
930
+ - type: recall_at_10
931
+ value: 19.78
932
+ - type: recall_at_30
933
+ value: 29.88
934
+ - type: recall_at_100
935
+ value: 42.4
936
+ - type: precision_at_1
937
+ value: 54.25
938
+ - type: precision_at_3
939
+ value: 39.42
940
+ - type: precision_at_5
941
+ value: 33.15
942
+ - type: precision_at_10
943
+ value: 25.95
944
+ - type: precision_at_30
945
+ value: 15.51
946
+ - type: precision_at_100
947
+ value: 7.9
948
+ - type: accuracy_at_3
949
+ value: 72.0
950
+ - type: accuracy_at_5
951
+ value: 77.75
952
+ - type: accuracy_at_10
953
+ value: 83.5
954
+ - task:
955
+ type: Retrieval
956
+ dataset:
957
+ type: fever
958
+ name: MTEB FEVER
959
+ config: default
960
+ split: test
961
+ revision: None
962
+ metrics:
963
+ - type: ndcg_at_1
964
+ value: 40.19
965
+ - type: ndcg_at_3
966
+ value: 50.51
967
+ - type: ndcg_at_5
968
+ value: 53.51
969
+ - type: ndcg_at_10
970
+ value: 56.45
971
+ - type: ndcg_at_30
972
+ value: 58.74
973
+ - type: ndcg_at_100
974
+ value: 59.72
975
+ - type: map_at_1
976
+ value: 37.56
977
+ - type: map_at_3
978
+ value: 46.74
979
+ - type: map_at_5
980
+ value: 48.46
981
+ - type: map_at_10
982
+ value: 49.7
983
+ - type: map_at_30
984
+ value: 50.31
985
+ - type: map_at_100
986
+ value: 50.43
987
+ - type: recall_at_1
988
+ value: 37.56
989
+ - type: recall_at_3
990
+ value: 58.28
991
+ - type: recall_at_5
992
+ value: 65.45
993
+ - type: recall_at_10
994
+ value: 74.28
995
+ - type: recall_at_30
996
+ value: 83.42
997
+ - type: recall_at_100
998
+ value: 88.76
999
+ - type: precision_at_1
1000
+ value: 40.19
1001
+ - type: precision_at_3
1002
+ value: 20.99
1003
+ - type: precision_at_5
1004
+ value: 14.24
1005
+ - type: precision_at_10
1006
+ value: 8.12
1007
+ - type: precision_at_30
1008
+ value: 3.06
1009
+ - type: precision_at_100
1010
+ value: 0.98
1011
+ - type: accuracy_at_3
1012
+ value: 62.3
1013
+ - type: accuracy_at_5
1014
+ value: 69.94
1015
+ - type: accuracy_at_10
1016
+ value: 79.13
1017
+ - task:
1018
+ type: Retrieval
1019
+ dataset:
1020
+ type: fiqa
1021
+ name: MTEB FiQA2018
1022
+ config: default
1023
+ split: test
1024
+ revision: None
1025
+ metrics:
1026
+ - type: ndcg_at_1
1027
+ value: 34.41
1028
+ - type: ndcg_at_3
1029
+ value: 33.2
1030
+ - type: ndcg_at_5
1031
+ value: 34.71
1032
+ - type: ndcg_at_10
1033
+ value: 37.1
1034
+ - type: ndcg_at_30
1035
+ value: 40.88
1036
+ - type: ndcg_at_100
1037
+ value: 44.12
1038
+ - type: map_at_1
1039
+ value: 17.27
1040
+ - type: map_at_3
1041
+ value: 25.36
1042
+ - type: map_at_5
1043
+ value: 27.76
1044
+ - type: map_at_10
1045
+ value: 29.46
1046
+ - type: map_at_30
1047
+ value: 30.74
1048
+ - type: map_at_100
1049
+ value: 31.29
1050
+ - type: recall_at_1
1051
+ value: 17.27
1052
+ - type: recall_at_3
1053
+ value: 30.46
1054
+ - type: recall_at_5
1055
+ value: 36.91
1056
+ - type: recall_at_10
1057
+ value: 44.47
1058
+ - type: recall_at_30
1059
+ value: 56.71
1060
+ - type: recall_at_100
1061
+ value: 70.72
1062
+ - type: precision_at_1
1063
+ value: 34.41
1064
+ - type: precision_at_3
1065
+ value: 22.32
1066
+ - type: precision_at_5
1067
+ value: 16.91
1068
+ - type: precision_at_10
1069
+ value: 10.53
1070
+ - type: precision_at_30
1071
+ value: 4.62
1072
+ - type: precision_at_100
1073
+ value: 1.79
1074
+ - type: accuracy_at_3
1075
+ value: 50.77
1076
+ - type: accuracy_at_5
1077
+ value: 57.56
1078
+ - type: accuracy_at_10
1079
+ value: 65.12
1080
+ - task:
1081
+ type: Retrieval
1082
+ dataset:
1083
+ type: hotpotqa
1084
+ name: MTEB HotpotQA
1085
+ config: default
1086
+ split: test
1087
+ revision: None
1088
+ metrics:
1089
+ - type: ndcg_at_1
1090
+ value: 57.93
1091
+ - type: ndcg_at_3
1092
+ value: 44.21
1093
+ - type: ndcg_at_5
1094
+ value: 46.4
1095
+ - type: ndcg_at_10
1096
+ value: 48.37
1097
+ - type: ndcg_at_30
1098
+ value: 50.44
1099
+ - type: ndcg_at_100
1100
+ value: 51.86
1101
+ - type: map_at_1
1102
+ value: 28.97
1103
+ - type: map_at_3
1104
+ value: 36.79
1105
+ - type: map_at_5
1106
+ value: 38.31
1107
+ - type: map_at_10
1108
+ value: 39.32
1109
+ - type: map_at_30
1110
+ value: 39.99
1111
+ - type: map_at_100
1112
+ value: 40.2
1113
+ - type: recall_at_1
1114
+ value: 28.97
1115
+ - type: recall_at_3
1116
+ value: 41.01
1117
+ - type: recall_at_5
1118
+ value: 45.36
1119
+ - type: recall_at_10
1120
+ value: 50.32
1121
+ - type: recall_at_30
1122
+ value: 57.38
1123
+ - type: recall_at_100
1124
+ value: 64.06
1125
+ - type: precision_at_1
1126
+ value: 57.93
1127
+ - type: precision_at_3
1128
+ value: 27.34
1129
+ - type: precision_at_5
1130
+ value: 18.14
1131
+ - type: precision_at_10
1132
+ value: 10.06
1133
+ - type: precision_at_30
1134
+ value: 3.82
1135
+ - type: precision_at_100
1136
+ value: 1.28
1137
+ - type: accuracy_at_3
1138
+ value: 71.03
1139
+ - type: accuracy_at_5
1140
+ value: 75.14
1141
+ - type: accuracy_at_10
1142
+ value: 79.84
1143
+ - task:
1144
+ type: Retrieval
1145
+ dataset:
1146
+ type: msmarco
1147
+ name: MTEB MSMARCO
1148
+ config: default
1149
+ split: dev
1150
+ revision: None
1151
+ metrics:
1152
+ - type: ndcg_at_1
1153
+ value: 19.74
1154
+ - type: ndcg_at_3
1155
+ value: 29.47
1156
+ - type: ndcg_at_5
1157
+ value: 32.99
1158
+ - type: ndcg_at_10
1159
+ value: 36.76
1160
+ - type: ndcg_at_30
1161
+ value: 40.52
1162
+ - type: ndcg_at_100
1163
+ value: 42.78
1164
+ - type: map_at_1
1165
+ value: 19.2
1166
+ - type: map_at_3
1167
+ value: 26.81
1168
+ - type: map_at_5
1169
+ value: 28.78
1170
+ - type: map_at_10
1171
+ value: 30.35
1172
+ - type: map_at_30
1173
+ value: 31.3
1174
+ - type: map_at_100
1175
+ value: 31.57
1176
+ - type: recall_at_1
1177
+ value: 19.2
1178
+ - type: recall_at_3
1179
+ value: 36.59
1180
+ - type: recall_at_5
1181
+ value: 45.08
1182
+ - type: recall_at_10
1183
+ value: 56.54
1184
+ - type: recall_at_30
1185
+ value: 72.05
1186
+ - type: recall_at_100
1187
+ value: 84.73
1188
+ - type: precision_at_1
1189
+ value: 19.74
1190
+ - type: precision_at_3
1191
+ value: 12.61
1192
+ - type: precision_at_5
1193
+ value: 9.37
1194
+ - type: precision_at_10
1195
+ value: 5.89
1196
+ - type: precision_at_30
1197
+ value: 2.52
1198
+ - type: precision_at_100
1199
+ value: 0.89
1200
+ - type: accuracy_at_3
1201
+ value: 37.38
1202
+ - type: accuracy_at_5
1203
+ value: 46.06
1204
+ - type: accuracy_at_10
1205
+ value: 57.62
1206
+ - task:
1207
+ type: Retrieval
1208
+ dataset:
1209
+ type: nq
1210
+ name: MTEB NQ
1211
+ config: default
1212
+ split: test
1213
+ revision: None
1214
+ metrics:
1215
+ - type: ndcg_at_1
1216
+ value: 25.9
1217
+ - type: ndcg_at_3
1218
+ value: 35.97
1219
+ - type: ndcg_at_5
1220
+ value: 40.27
1221
+ - type: ndcg_at_10
1222
+ value: 44.44
1223
+ - type: ndcg_at_30
1224
+ value: 48.31
1225
+ - type: ndcg_at_100
1226
+ value: 50.14
1227
+ - type: map_at_1
1228
+ value: 23.03
1229
+ - type: map_at_3
1230
+ value: 32.45
1231
+ - type: map_at_5
1232
+ value: 34.99
1233
+ - type: map_at_10
1234
+ value: 36.84
1235
+ - type: map_at_30
1236
+ value: 37.92
1237
+ - type: map_at_100
1238
+ value: 38.16
1239
+ - type: recall_at_1
1240
+ value: 23.03
1241
+ - type: recall_at_3
1242
+ value: 43.49
1243
+ - type: recall_at_5
1244
+ value: 53.41
1245
+ - type: recall_at_10
1246
+ value: 65.65
1247
+ - type: recall_at_30
1248
+ value: 80.79
1249
+ - type: recall_at_100
1250
+ value: 90.59
1251
+ - type: precision_at_1
1252
+ value: 25.9
1253
+ - type: precision_at_3
1254
+ value: 16.76
1255
+ - type: precision_at_5
1256
+ value: 12.54
1257
+ - type: precision_at_10
1258
+ value: 7.78
1259
+ - type: precision_at_30
1260
+ value: 3.23
1261
+ - type: precision_at_100
1262
+ value: 1.1
1263
+ - type: accuracy_at_3
1264
+ value: 47.31
1265
+ - type: accuracy_at_5
1266
+ value: 57.16
1267
+ - type: accuracy_at_10
1268
+ value: 69.09
1269
+ - task:
1270
+ type: Retrieval
1271
+ dataset:
1272
+ type: nfcorpus
1273
+ name: MTEB NFCorpus
1274
+ config: default
1275
+ split: test
1276
+ revision: None
1277
+ metrics:
1278
+ - type: ndcg_at_1
1279
+ value: 40.87
1280
+ - type: ndcg_at_3
1281
+ value: 36.79
1282
+ - type: ndcg_at_5
1283
+ value: 34.47
1284
+ - type: ndcg_at_10
1285
+ value: 32.05
1286
+ - type: ndcg_at_30
1287
+ value: 29.23
1288
+ - type: ndcg_at_100
1289
+ value: 29.84
1290
+ - type: map_at_1
1291
+ value: 5.05
1292
+ - type: map_at_3
1293
+ value: 8.5
1294
+ - type: map_at_5
1295
+ value: 9.87
1296
+ - type: map_at_10
1297
+ value: 11.71
1298
+ - type: map_at_30
1299
+ value: 13.48
1300
+ - type: map_at_100
1301
+ value: 14.86
1302
+ - type: recall_at_1
1303
+ value: 5.05
1304
+ - type: recall_at_3
1305
+ value: 9.55
1306
+ - type: recall_at_5
1307
+ value: 11.91
1308
+ - type: recall_at_10
1309
+ value: 16.07
1310
+ - type: recall_at_30
1311
+ value: 22.13
1312
+ - type: recall_at_100
1313
+ value: 30.7
1314
+ - type: precision_at_1
1315
+ value: 42.72
1316
+ - type: precision_at_3
1317
+ value: 34.78
1318
+ - type: precision_at_5
1319
+ value: 30.03
1320
+ - type: precision_at_10
1321
+ value: 23.93
1322
+ - type: precision_at_30
1323
+ value: 14.61
1324
+ - type: precision_at_100
1325
+ value: 7.85
1326
+ - type: accuracy_at_3
1327
+ value: 58.2
1328
+ - type: accuracy_at_5
1329
+ value: 64.09
1330
+ - type: accuracy_at_10
1331
+ value: 69.35
1332
+ - task:
1333
+ type: Retrieval
1334
+ dataset:
1335
+ type: quora
1336
+ name: MTEB QuoraRetrieval
1337
+ config: default
1338
+ split: test
1339
+ revision: None
1340
+ metrics:
1341
+ - type: ndcg_at_1
1342
+ value: 80.62
1343
+ - type: ndcg_at_3
1344
+ value: 84.62
1345
+ - type: ndcg_at_5
1346
+ value: 86.25
1347
+ - type: ndcg_at_10
1348
+ value: 87.7
1349
+ - type: ndcg_at_30
1350
+ value: 88.63
1351
+ - type: ndcg_at_100
1352
+ value: 88.95
1353
+ - type: map_at_1
1354
+ value: 69.91
1355
+ - type: map_at_3
1356
+ value: 80.7
1357
+ - type: map_at_5
1358
+ value: 82.57
1359
+ - type: map_at_10
1360
+ value: 83.78
1361
+ - type: map_at_30
1362
+ value: 84.33
1363
+ - type: map_at_100
1364
+ value: 84.44
1365
+ - type: recall_at_1
1366
+ value: 69.91
1367
+ - type: recall_at_3
1368
+ value: 86.36
1369
+ - type: recall_at_5
1370
+ value: 90.99
1371
+ - type: recall_at_10
1372
+ value: 95.19
1373
+ - type: recall_at_30
1374
+ value: 98.25
1375
+ - type: recall_at_100
1376
+ value: 99.47
1377
+ - type: precision_at_1
1378
+ value: 80.62
1379
+ - type: precision_at_3
1380
+ value: 37.03
1381
+ - type: precision_at_5
1382
+ value: 24.36
1383
+ - type: precision_at_10
1384
+ value: 13.4
1385
+ - type: precision_at_30
1386
+ value: 4.87
1387
+ - type: precision_at_100
1388
+ value: 1.53
1389
+ - type: accuracy_at_3
1390
+ value: 92.25
1391
+ - type: accuracy_at_5
1392
+ value: 95.29
1393
+ - type: accuracy_at_10
1394
+ value: 97.74
1395
+ - task:
1396
+ type: Retrieval
1397
+ dataset:
1398
+ type: scidocs
1399
+ name: MTEB SCIDOCS
1400
+ config: default
1401
+ split: test
1402
+ revision: None
1403
+ metrics:
1404
+ - type: ndcg_at_1
1405
+ value: 24.1
1406
+ - type: ndcg_at_3
1407
+ value: 20.18
1408
+ - type: ndcg_at_5
1409
+ value: 17.72
1410
+ - type: ndcg_at_10
1411
+ value: 21.5
1412
+ - type: ndcg_at_30
1413
+ value: 26.66
1414
+ - type: ndcg_at_100
1415
+ value: 30.95
1416
+ - type: map_at_1
1417
+ value: 4.88
1418
+ - type: map_at_3
1419
+ value: 9.09
1420
+ - type: map_at_5
1421
+ value: 10.99
1422
+ - type: map_at_10
1423
+ value: 12.93
1424
+ - type: map_at_30
1425
+ value: 14.71
1426
+ - type: map_at_100
1427
+ value: 15.49
1428
+ - type: recall_at_1
1429
+ value: 4.88
1430
+ - type: recall_at_3
1431
+ value: 11.55
1432
+ - type: recall_at_5
1433
+ value: 15.91
1434
+ - type: recall_at_10
1435
+ value: 22.82
1436
+ - type: recall_at_30
1437
+ value: 35.7
1438
+ - type: recall_at_100
1439
+ value: 50.41
1440
+ - type: precision_at_1
1441
+ value: 24.1
1442
+ - type: precision_at_3
1443
+ value: 19.0
1444
+ - type: precision_at_5
1445
+ value: 15.72
1446
+ - type: precision_at_10
1447
+ value: 11.27
1448
+ - type: precision_at_30
1449
+ value: 5.87
1450
+ - type: precision_at_100
1451
+ value: 2.49
1452
+ - type: accuracy_at_3
1453
+ value: 43.0
1454
+ - type: accuracy_at_5
1455
+ value: 51.6
1456
+ - type: accuracy_at_10
1457
+ value: 62.7
1458
+ - task:
1459
+ type: Retrieval
1460
+ dataset:
1461
+ type: scifact
1462
+ name: MTEB SciFact
1463
+ config: default
1464
+ split: test
1465
+ revision: None
1466
+ metrics:
1467
+ - type: ndcg_at_1
1468
+ value: 52.33
1469
+ - type: ndcg_at_3
1470
+ value: 61.47
1471
+ - type: ndcg_at_5
1472
+ value: 63.82
1473
+ - type: ndcg_at_10
1474
+ value: 65.81
1475
+ - type: ndcg_at_30
1476
+ value: 67.75
1477
+ - type: ndcg_at_100
1478
+ value: 68.96
1479
+ - type: map_at_1
1480
+ value: 50.46
1481
+ - type: map_at_3
1482
+ value: 58.51
1483
+ - type: map_at_5
1484
+ value: 60.12
1485
+ - type: map_at_10
1486
+ value: 61.07
1487
+ - type: map_at_30
1488
+ value: 61.64
1489
+ - type: map_at_100
1490
+ value: 61.8
1491
+ - type: recall_at_1
1492
+ value: 50.46
1493
+ - type: recall_at_3
1494
+ value: 67.81
1495
+ - type: recall_at_5
1496
+ value: 73.6
1497
+ - type: recall_at_10
1498
+ value: 79.31
1499
+ - type: recall_at_30
1500
+ value: 86.8
1501
+ - type: recall_at_100
1502
+ value: 93.5
1503
+ - type: precision_at_1
1504
+ value: 52.33
1505
+ - type: precision_at_3
1506
+ value: 24.56
1507
+ - type: precision_at_5
1508
+ value: 16.27
1509
+ - type: precision_at_10
1510
+ value: 8.9
1511
+ - type: precision_at_30
1512
+ value: 3.28
1513
+ - type: precision_at_100
1514
+ value: 1.06
1515
+ - type: accuracy_at_3
1516
+ value: 69.67
1517
+ - type: accuracy_at_5
1518
+ value: 75.0
1519
+ - type: accuracy_at_10
1520
+ value: 80.67
1521
+ - task:
1522
+ type: Retrieval
1523
+ dataset:
1524
+ type: trec-covid
1525
+ name: MTEB TRECCOVID
1526
+ config: default
1527
+ split: test
1528
+ revision: None
1529
+ metrics:
1530
+ - type: ndcg_at_1
1531
+ value: 57.0
1532
+ - type: ndcg_at_3
1533
+ value: 53.78
1534
+ - type: ndcg_at_5
1535
+ value: 52.62
1536
+ - type: ndcg_at_10
1537
+ value: 48.9
1538
+ - type: ndcg_at_30
1539
+ value: 44.2
1540
+ - type: ndcg_at_100
1541
+ value: 36.53
1542
+ - type: map_at_1
1543
+ value: 0.16
1544
+ - type: map_at_3
1545
+ value: 0.41
1546
+ - type: map_at_5
1547
+ value: 0.62
1548
+ - type: map_at_10
1549
+ value: 1.07
1550
+ - type: map_at_30
1551
+ value: 2.46
1552
+ - type: map_at_100
1553
+ value: 5.52
1554
+ - type: recall_at_1
1555
+ value: 0.16
1556
+ - type: recall_at_3
1557
+ value: 0.45
1558
+ - type: recall_at_5
1559
+ value: 0.72
1560
+ - type: recall_at_10
1561
+ value: 1.33
1562
+ - type: recall_at_30
1563
+ value: 3.46
1564
+ - type: recall_at_100
1565
+ value: 8.73
1566
+ - type: precision_at_1
1567
+ value: 62.0
1568
+ - type: precision_at_3
1569
+ value: 57.33
1570
+ - type: precision_at_5
1571
+ value: 56.0
1572
+ - type: precision_at_10
1573
+ value: 52.0
1574
+ - type: precision_at_30
1575
+ value: 46.2
1576
+ - type: precision_at_100
1577
+ value: 37.22
1578
+ - type: accuracy_at_3
1579
+ value: 82.0
1580
+ - type: accuracy_at_5
1581
+ value: 90.0
1582
+ - type: accuracy_at_10
1583
+ value: 92.0
1584
+ - task:
1585
+ type: Retrieval
1586
+ dataset:
1587
+ type: webis-touche2020
1588
+ name: MTEB Touche2020
1589
+ config: default
1590
+ split: test
1591
+ revision: None
1592
+ metrics:
1593
+ - type: ndcg_at_1
1594
+ value: 20.41
1595
+ - type: ndcg_at_3
1596
+ value: 17.62
1597
+ - type: ndcg_at_5
1598
+ value: 17.16
1599
+ - type: ndcg_at_10
1600
+ value: 17.09
1601
+ - type: ndcg_at_30
1602
+ value: 20.1
1603
+ - type: ndcg_at_100
1604
+ value: 26.33
1605
+ - type: map_at_1
1606
+ value: 2.15
1607
+ - type: map_at_3
1608
+ value: 3.59
1609
+ - type: map_at_5
1610
+ value: 5.07
1611
+ - type: map_at_10
1612
+ value: 6.95
1613
+ - type: map_at_30
1614
+ value: 9.01
1615
+ - type: map_at_100
1616
+ value: 10.54
1617
+ - type: recall_at_1
1618
+ value: 2.15
1619
+ - type: recall_at_3
1620
+ value: 4.5
1621
+ - type: recall_at_5
1622
+ value: 7.54
1623
+ - type: recall_at_10
1624
+ value: 12.46
1625
+ - type: recall_at_30
1626
+ value: 21.9
1627
+ - type: recall_at_100
1628
+ value: 36.58
1629
+ - type: precision_at_1
1630
+ value: 22.45
1631
+ - type: precision_at_3
1632
+ value: 19.05
1633
+ - type: precision_at_5
1634
+ value: 17.55
1635
+ - type: precision_at_10
1636
+ value: 15.51
1637
+ - type: precision_at_30
1638
+ value: 10.07
1639
+ - type: precision_at_100
1640
+ value: 5.57
1641
+ - type: accuracy_at_3
1642
+ value: 42.86
1643
+ - type: accuracy_at_5
1644
+ value: 53.06
1645
+ - type: accuracy_at_10
1646
+ value: 69.39
1647
+ - task:
1648
+ type: Retrieval
1649
+ dataset:
1650
+ type: BeIR/cqadupstack
1651
+ name: MTEB CQADupstackRetrieval
1652
+ config: default
1653
+ split: test
1654
+ revision: None
1655
+ metrics:
1656
+ - type: ndcg_at_10
1657
+ value: 41.59
1658
+ license: apache-2.0
1659
+ language:
1660
+ - en
1661
+ pipeline_tag: feature-extraction
1662
+ ---
1663
+
1664
+
1665
+ <p align="center">
1666
+ <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" viewBox="0 0 2020 1130" width="150" height="150" aria-hidden="true"><path fill="#e95a0f" d="M398.167 621.992c-1.387-20.362-4.092-40.739-3.851-61.081.355-30.085 6.873-59.139 21.253-85.976 10.487-19.573 24.09-36.822 40.662-51.515 16.394-14.535 34.338-27.046 54.336-36.182 15.224-6.955 31.006-12.609 47.829-14.168 11.809-1.094 23.753-2.514 35.524-1.836 23.033 1.327 45.131 7.255 66.255 16.75 16.24 7.3 31.497 16.165 45.651 26.969 12.997 9.921 24.412 21.37 34.158 34.509 11.733 15.817 20.849 33.037 25.987 52.018 3.468 12.81 6.438 25.928 7.779 39.097 1.722 16.908 1.642 34.003 2.235 51.021.427 12.253.224 24.547 1.117 36.762 1.677 22.93 4.062 45.764 11.8 67.7 5.376 15.239 12.499 29.55 20.846 43.681l-18.282 20.328c-1.536 1.71-2.795 3.665-4.254 5.448l-19.323 23.533c-13.859-5.449-27.446-11.803-41.657-16.086-13.622-4.106-27.793-6.765-41.905-8.775-15.256-2.173-30.701-3.475-46.105-4.049-23.571-.879-47.178-1.056-70.769-1.029-10.858.013-21.723 1.116-32.57 1.926-5.362.4-10.69 1.255-16.464 1.477-2.758-7.675-5.284-14.865-7.367-22.181-3.108-10.92-4.325-22.554-13.16-31.095-2.598-2.512-5.069-5.341-6.883-8.443-6.366-10.884-12.48-21.917-18.571-32.959-4.178-7.573-8.411-14.375-17.016-18.559-10.34-5.028-19.538-12.387-29.311-18.611-3.173-2.021-6.414-4.312-9.952-5.297-5.857-1.63-11.98-2.301-17.991-3.376z"></path><path fill="#ed6d7b" d="M1478.998 758.842c-12.025.042-24.05.085-36.537-.373-.14-8.536.231-16.569.453-24.607.033-1.179-.315-2.986-1.081-3.4-.805-.434-2.376.338-3.518.81-.856.354-1.562 1.069-3.589 2.521-.239-3.308-.664-5.586-.519-7.827.488-7.544 2.212-15.166 1.554-22.589-1.016-11.451 1.397-14.592-12.332-14.419-3.793.048-3.617-2.803-3.332-5.331.499-4.422 1.45-8.803 1.77-13.233.311-4.316.068-8.672.068-12.861-2.554-.464-4.326-.86-6.12-1.098-4.415-.586-6.051-2.251-5.065-7.31 1.224-6.279.848-12.862 1.276-19.306.19-2.86-.971-4.473-3.794-4.753-4.113-.407-8.242-1.057-12.352-.975-4.663.093-5.192-2.272-4.751-6.012.733-6.229 1.252-12.483 1.875-18.726l1.102-10.495c-5.905-.309-11.146-.805-16.385-.778-3.32.017-5.174-1.4-5.566-4.4-1.172-8.968-2.479-17.944-3.001-26.96-.26-4.484-1.936-5.705-6.005-5.774-9.284-.158-18.563-.594-27.843-.953-7.241-.28-10.137-2.764-11.3-9.899-.746-4.576-2.715-7.801-7.777-8.207-7.739-.621-15.511-.992-23.207-1.961-7.327-.923-14.587-2.415-21.853-3.777-5.021-.941-10.003-2.086-15.003-3.14 4.515-22.952 13.122-44.382 26.284-63.587 18.054-26.344 41.439-47.239 69.102-63.294 15.847-9.197 32.541-16.277 50.376-20.599 16.655-4.036 33.617-5.715 50.622-4.385 33.334 2.606 63.836 13.955 92.415 31.15 15.864 9.545 30.241 20.86 42.269 34.758 8.113 9.374 15.201 19.78 21.718 30.359 10.772 17.484 16.846 36.922 20.611 56.991 1.783 9.503 2.815 19.214 3.318 28.876.758 14.578.755 29.196.65 44.311l-51.545 20.013c-7.779 3.059-15.847 5.376-21.753 12.365-4.73 5.598-10.658 10.316-16.547 14.774-9.9 7.496-18.437 15.988-25.083 26.631-3.333 5.337-7.901 10.381-12.999 14.038-11.355 8.144-17.397 18.973-19.615 32.423l-6.988 41.011z"></path><path fill="#ec663e" d="M318.11 923.047c-.702 17.693-.832 35.433-2.255 53.068-1.699 21.052-6.293 41.512-14.793 61.072-9.001 20.711-21.692 38.693-38.496 53.583-16.077 14.245-34.602 24.163-55.333 30.438-21.691 6.565-43.814 8.127-66.013 6.532-22.771-1.636-43.88-9.318-62.74-22.705-20.223-14.355-35.542-32.917-48.075-54.096-9.588-16.203-16.104-33.55-19.201-52.015-2.339-13.944-2.307-28.011-.403-42.182 2.627-19.545 9.021-37.699 17.963-55.067 11.617-22.564 27.317-41.817 48.382-56.118 15.819-10.74 33.452-17.679 52.444-20.455 8.77-1.282 17.696-1.646 26.568-2.055 11.755-.542 23.534-.562 35.289-1.11 8.545-.399 17.067-1.291 26.193-1.675 1.349 1.77 2.24 3.199 2.835 4.742 4.727 12.261 10.575 23.865 18.636 34.358 7.747 10.084 14.83 20.684 22.699 30.666 3.919 4.972 8.37 9.96 13.609 13.352 7.711 4.994 16.238 8.792 24.617 12.668 5.852 2.707 12.037 4.691 18.074 6.998z"></path><path fill="#ea580e" d="M1285.167 162.995c3.796-29.75 13.825-56.841 32.74-80.577 16.339-20.505 36.013-36.502 59.696-47.614 14.666-6.881 29.971-11.669 46.208-12.749 10.068-.669 20.239-1.582 30.255-.863 16.6 1.191 32.646 5.412 47.9 12.273 19.39 8.722 36.44 20.771 50.582 36.655 15.281 17.162 25.313 37.179 31.49 59.286 5.405 19.343 6.31 39.161 4.705 58.825-2.37 29.045-11.836 55.923-30.451 78.885-10.511 12.965-22.483 24.486-37.181 33.649-5.272-5.613-10.008-11.148-14.539-16.846-5.661-7.118-10.958-14.533-16.78-21.513-4.569-5.478-9.548-10.639-14.624-15.658-3.589-3.549-7.411-6.963-11.551-9.827-5.038-3.485-10.565-6.254-15.798-9.468-8.459-5.195-17.011-9.669-26.988-11.898-12.173-2.72-24.838-4.579-35.622-11.834-1.437-.967-3.433-1.192-5.213-1.542-12.871-2.529-25.454-5.639-36.968-12.471-5.21-3.091-11.564-4.195-17.011-6.965-4.808-2.445-8.775-6.605-13.646-8.851-8.859-4.085-18.114-7.311-27.204-10.896z"></path><path fill="#f8ab00" d="M524.963 311.12c-9.461-5.684-19.513-10.592-28.243-17.236-12.877-9.801-24.031-21.578-32.711-35.412-11.272-17.965-19.605-37.147-21.902-58.403-1.291-11.951-2.434-24.073-1.87-36.034.823-17.452 4.909-34.363 11.581-50.703 8.82-21.603 22.25-39.792 39.568-55.065 18.022-15.894 39.162-26.07 62.351-32.332 19.22-5.19 38.842-6.177 58.37-4.674 23.803 1.831 45.56 10.663 65.062 24.496 17.193 12.195 31.688 27.086 42.894 45.622-11.403 8.296-22.633 16.117-34.092 23.586-17.094 11.142-34.262 22.106-48.036 37.528-8.796 9.848-17.201 20.246-27.131 28.837-16.859 14.585-27.745 33.801-41.054 51.019-11.865 15.349-20.663 33.117-30.354 50.08-5.303 9.283-9.654 19.11-14.434 28.692z"></path><path fill="#ea5227" d="M1060.11 1122.049c-7.377 1.649-14.683 4.093-22.147 4.763-11.519 1.033-23.166 1.441-34.723 1.054-19.343-.647-38.002-4.7-55.839-12.65-15.078-6.72-28.606-15.471-40.571-26.836-24.013-22.81-42.053-49.217-49.518-81.936-1.446-6.337-1.958-12.958-2.235-19.477-.591-13.926-.219-27.909-1.237-41.795-.916-12.5-3.16-24.904-4.408-37.805 1.555-1.381 3.134-2.074 3.778-3.27 4.729-8.79 12.141-15.159 19.083-22.03 5.879-5.818 10.688-12.76 16.796-18.293 6.993-6.335 11.86-13.596 14.364-22.612l8.542-29.993c8.015 1.785 15.984 3.821 24.057 5.286 8.145 1.478 16.371 2.59 24.602 3.493 8.453.927 16.956 1.408 25.891 2.609 1.119 16.09 1.569 31.667 2.521 47.214.676 11.045 1.396 22.154 3.234 33.043 2.418 14.329 5.708 28.527 9.075 42.674 3.499 14.705 4.028 29.929 10.415 44.188 10.157 22.674 18.29 46.25 28.281 69.004 7.175 16.341 12.491 32.973 15.078 50.615.645 4.4 3.256 8.511 4.963 12.755z"></path><path fill="#ea5330" d="M1060.512 1122.031c-2.109-4.226-4.72-8.337-5.365-12.737-2.587-17.642-7.904-34.274-15.078-50.615-9.991-22.755-18.124-46.33-28.281-69.004-6.387-14.259-6.916-29.482-10.415-44.188-3.366-14.147-6.656-28.346-9.075-42.674-1.838-10.889-2.558-21.999-3.234-33.043-.951-15.547-1.401-31.124-2.068-47.146 8.568-.18 17.146.487 25.704.286l41.868-1.4c.907 3.746 1.245 7.04 1.881 10.276l8.651 42.704c.903 4.108 2.334 8.422 4.696 11.829 7.165 10.338 14.809 20.351 22.456 30.345 4.218 5.512 8.291 11.304 13.361 15.955 8.641 7.927 18.065 14.995 27.071 22.532 12.011 10.052 24.452 19.302 40.151 22.854-1.656 11.102-2.391 22.44-5.172 33.253-4.792 18.637-12.38 36.209-23.412 52.216-13.053 18.94-29.086 34.662-49.627 45.055-10.757 5.443-22.443 9.048-34.111 13.501z"></path><path fill="#f8aa05" d="M1989.106 883.951c5.198 8.794 11.46 17.148 15.337 26.491 5.325 12.833 9.744 26.207 12.873 39.737 2.95 12.757 3.224 25.908 1.987 39.219-1.391 14.973-4.643 29.268-10.349 43.034-5.775 13.932-13.477 26.707-23.149 38.405-14.141 17.104-31.215 30.458-50.807 40.488-14.361 7.352-29.574 12.797-45.741 14.594-10.297 1.144-20.732 2.361-31.031 1.894-24.275-1.1-47.248-7.445-68.132-20.263-6.096-3.741-11.925-7.917-17.731-12.342 5.319-5.579 10.361-10.852 15.694-15.811l37.072-34.009c.975-.892 2.113-1.606 3.08-2.505 6.936-6.448 14.765-12.2 20.553-19.556 8.88-11.285 20.064-19.639 31.144-28.292 4.306-3.363 9.06-6.353 12.673-10.358 5.868-6.504 10.832-13.814 16.422-20.582 6.826-8.264 13.727-16.481 20.943-24.401 4.065-4.461 8.995-8.121 13.249-12.424 14.802-14.975 28.77-30.825 45.913-43.317z"></path><path fill="#ed6876" d="M1256.099 523.419c5.065.642 10.047 1.787 15.068 2.728 7.267 1.362 14.526 2.854 21.853 3.777 7.696.97 15.468 1.34 23.207 1.961 5.062.406 7.031 3.631 7.777 8.207 1.163 7.135 4.059 9.62 11.3 9.899l27.843.953c4.069.069 5.745 1.291 6.005 5.774.522 9.016 1.829 17.992 3.001 26.96.392 3 2.246 4.417 5.566 4.4 5.239-.026 10.48.469 16.385.778l-1.102 10.495-1.875 18.726c-.44 3.74.088 6.105 4.751 6.012 4.11-.082 8.239.568 12.352.975 2.823.28 3.984 1.892 3.794 4.753-.428 6.444-.052 13.028-1.276 19.306-.986 5.059.651 6.724 5.065 7.31 1.793.238 3.566.634 6.12 1.098 0 4.189.243 8.545-.068 12.861-.319 4.43-1.27 8.811-1.77 13.233-.285 2.528-.461 5.379 3.332 5.331 13.729-.173 11.316 2.968 12.332 14.419.658 7.423-1.066 15.045-1.554 22.589-.145 2.241.28 4.519.519 7.827 2.026-1.452 2.733-2.167 3.589-2.521 1.142-.472 2.713-1.244 3.518-.81.767.414 1.114 2.221 1.081 3.4l-.917 24.539c-11.215.82-22.45.899-33.636 1.674l-43.952 3.436c-1.086-3.01-2.319-5.571-2.296-8.121.084-9.297-4.468-16.583-9.091-24.116-3.872-6.308-8.764-13.052-9.479-19.987-1.071-10.392-5.716-15.936-14.889-18.979-1.097-.364-2.16-.844-3.214-1.327-7.478-3.428-15.548-5.918-19.059-14.735-.904-2.27-3.657-3.775-5.461-5.723-2.437-2.632-4.615-5.525-7.207-7.987-2.648-2.515-5.352-5.346-8.589-6.777-4.799-2.121-10.074-3.185-15.175-4.596l-15.785-4.155c.274-12.896 1.722-25.901.54-38.662-1.647-17.783-3.457-35.526-2.554-53.352.528-10.426 2.539-20.777 3.948-31.574z"></path><path fill="#f6a200" d="M525.146 311.436c4.597-9.898 8.947-19.725 14.251-29.008 9.691-16.963 18.49-34.73 30.354-50.08 13.309-17.218 24.195-36.434 41.054-51.019 9.93-8.591 18.335-18.989 27.131-28.837 13.774-15.422 30.943-26.386 48.036-37.528 11.459-7.469 22.688-15.29 34.243-23.286 11.705 16.744 19.716 35.424 22.534 55.717 2.231 16.066 2.236 32.441 2.753 49.143-4.756 1.62-9.284 2.234-13.259 4.056-6.43 2.948-12.193 7.513-18.774 9.942-19.863 7.331-33.806 22.349-47.926 36.784-7.86 8.035-13.511 18.275-19.886 27.705-4.434 6.558-9.345 13.037-12.358 20.254-4.249 10.177-6.94 21.004-10.296 31.553-12.33.053-24.741 1.027-36.971-.049-20.259-1.783-40.227-5.567-58.755-14.69-.568-.28-1.295-.235-2.132-.658z"></path><path fill="#f7a80d" d="M1989.057 883.598c-17.093 12.845-31.061 28.695-45.863 43.67-4.254 4.304-9.184 7.963-13.249 12.424-7.216 7.92-14.117 16.137-20.943 24.401-5.59 6.768-10.554 14.078-16.422 20.582-3.614 4.005-8.367 6.995-12.673 10.358-11.08 8.653-22.264 17.007-31.144 28.292-5.788 7.356-13.617 13.108-20.553 19.556-.967.899-2.105 1.614-3.08 2.505l-37.072 34.009c-5.333 4.96-10.375 10.232-15.859 15.505-21.401-17.218-37.461-38.439-48.623-63.592 3.503-1.781 7.117-2.604 9.823-4.637 8.696-6.536 20.392-8.406 27.297-17.714.933-1.258 2.646-1.973 4.065-2.828 17.878-10.784 36.338-20.728 53.441-32.624 10.304-7.167 18.637-17.23 27.583-26.261 3.819-3.855 7.436-8.091 10.3-12.681 12.283-19.68 24.43-39.446 40.382-56.471 12.224-13.047 17.258-29.524 22.539-45.927 15.85 4.193 29.819 12.129 42.632 22.08 10.583 8.219 19.782 17.883 27.42 29.351z"></path><path fill="#ef7a72" d="M1479.461 758.907c1.872-13.734 4.268-27.394 6.525-41.076 2.218-13.45 8.26-24.279 19.615-32.423 5.099-3.657 9.667-8.701 12.999-14.038 6.646-10.643 15.183-19.135 25.083-26.631 5.888-4.459 11.817-9.176 16.547-14.774 5.906-6.99 13.974-9.306 21.753-12.365l51.48-19.549c.753 11.848.658 23.787 1.641 35.637 1.771 21.353 4.075 42.672 11.748 62.955.17.449.107.985-.019 2.158-6.945 4.134-13.865 7.337-20.437 11.143-3.935 2.279-7.752 5.096-10.869 8.384-6.011 6.343-11.063 13.624-17.286 19.727-9.096 8.92-12.791 20.684-18.181 31.587-.202.409-.072.984-.096 1.481-8.488-1.72-16.937-3.682-25.476-5.094-9.689-1.602-19.426-3.084-29.201-3.949-15.095-1.335-30.241-2.1-45.828-3.172z"></path><path fill="#e94e3b" d="M957.995 766.838c-20.337-5.467-38.791-14.947-55.703-27.254-8.2-5.967-15.451-13.238-22.958-20.37 2.969-3.504 5.564-6.772 8.598-9.563 7.085-6.518 11.283-14.914 15.8-23.153 4.933-8.996 10.345-17.743 14.966-26.892 2.642-5.231 5.547-11.01 5.691-16.611.12-4.651.194-8.932 2.577-12.742 8.52-13.621 15.483-28.026 18.775-43.704 2.11-10.049 7.888-18.774 7.81-29.825-.064-9.089 4.291-18.215 6.73-27.313 3.212-11.983 7.369-23.797 9.492-35.968 3.202-18.358 5.133-36.945 7.346-55.466l4.879-45.8c6.693.288 13.386.575 20.54 1.365.13 3.458-.41 6.407-.496 9.37l-1.136 42.595c-.597 11.552-2.067 23.058-3.084 34.59l-3.845 44.478c-.939 10.202-1.779 20.432-3.283 30.557-.96 6.464-4.46 12.646-1.136 19.383.348.706-.426 1.894-.448 2.864-.224 9.918-5.99 19.428-2.196 29.646.103.279-.033.657-.092.983l-8.446 46.205c-1.231 6.469-2.936 12.846-4.364 19.279-1.5 6.757-2.602 13.621-4.456 20.277-3.601 12.93-10.657 25.3-5.627 39.47.368 1.036.234 2.352.017 3.476l-5.949 30.123z"></path><path fill="#ea5043" d="M958.343 767.017c1.645-10.218 3.659-20.253 5.602-30.302.217-1.124.351-2.44-.017-3.476-5.03-14.17 2.026-26.539 5.627-39.47 1.854-6.656 2.956-13.52 4.456-20.277 1.428-6.433 3.133-12.81 4.364-19.279l8.446-46.205c.059-.326.196-.705.092-.983-3.794-10.218 1.972-19.728 2.196-29.646.022-.97.796-2.158.448-2.864-3.324-6.737.176-12.919 1.136-19.383 1.504-10.125 2.344-20.355 3.283-30.557l3.845-44.478c1.017-11.532 2.488-23.038 3.084-34.59.733-14.18.722-28.397 1.136-42.595.086-2.963.626-5.912.956-9.301 5.356-.48 10.714-.527 16.536-.081 2.224 15.098 1.855 29.734 1.625 44.408-.157 10.064 1.439 20.142 1.768 30.23.334 10.235-.035 20.49.116 30.733.084 5.713.789 11.418.861 17.13.054 4.289-.469 8.585-.702 12.879-.072 1.323-.138 2.659-.031 3.975l2.534 34.405-1.707 36.293-1.908 48.69c-.182 8.103.993 16.237.811 24.34-.271 12.076-1.275 24.133-1.787 36.207-.102 2.414-.101 5.283 1.06 7.219 4.327 7.22 4.463 15.215 4.736 23.103.365 10.553.088 21.128.086 31.693-11.44 2.602-22.84.688-34.106-.916-11.486-1.635-22.806-4.434-34.546-6.903z"></path><path fill="#eb5d19" d="M398.091 622.45c6.086.617 12.21 1.288 18.067 2.918 3.539.985 6.779 3.277 9.952 5.297 9.773 6.224 18.971 13.583 29.311 18.611 8.606 4.184 12.839 10.986 17.016 18.559l18.571 32.959c1.814 3.102 4.285 5.931 6.883 8.443 8.835 8.542 10.052 20.175 13.16 31.095 2.082 7.317 4.609 14.507 6.946 22.127-29.472 3.021-58.969 5.582-87.584 15.222-1.185-2.302-1.795-4.362-2.769-6.233-4.398-8.449-6.703-18.174-14.942-24.299-2.511-1.866-5.103-3.814-7.047-6.218-8.358-10.332-17.028-20.276-28.772-26.973 4.423-11.478 9.299-22.806 13.151-34.473 4.406-13.348 6.724-27.18 6.998-41.313.098-5.093.643-10.176 1.06-15.722z"></path><path fill="#e94c32" d="M981.557 392.109c-1.172 15.337-2.617 30.625-4.438 45.869-2.213 18.521-4.144 37.108-7.346 55.466-2.123 12.171-6.28 23.985-9.492 35.968-2.439 9.098-6.794 18.224-6.73 27.313.078 11.051-5.7 19.776-7.81 29.825-3.292 15.677-10.255 30.082-18.775 43.704-2.383 3.81-2.458 8.091-2.577 12.742-.144 5.6-3.049 11.38-5.691 16.611-4.621 9.149-10.033 17.896-14.966 26.892-4.517 8.239-8.715 16.635-15.8 23.153-3.034 2.791-5.629 6.06-8.735 9.255-12.197-10.595-21.071-23.644-29.301-37.24-7.608-12.569-13.282-25.962-17.637-40.37 13.303-6.889 25.873-13.878 35.311-25.315.717-.869 1.934-1.312 2.71-2.147 5.025-5.405 10.515-10.481 14.854-16.397 6.141-8.374 10.861-17.813 17.206-26.008 8.22-10.618 13.657-22.643 20.024-34.466 4.448-.626 6.729-3.21 8.114-6.89 1.455-3.866 2.644-7.895 4.609-11.492 4.397-8.05 9.641-15.659 13.708-23.86 3.354-6.761 5.511-14.116 8.203-21.206 5.727-15.082 7.277-31.248 12.521-46.578 3.704-10.828 3.138-23.116 4.478-34.753l7.56-.073z"></path><path fill="#f7a617" d="M1918.661 831.99c-4.937 16.58-9.971 33.057-22.196 46.104-15.952 17.025-28.099 36.791-40.382 56.471-2.864 4.59-6.481 8.825-10.3 12.681-8.947 9.031-17.279 19.094-27.583 26.261-17.103 11.896-35.564 21.84-53.441 32.624-1.419.856-3.132 1.571-4.065 2.828-6.904 9.308-18.6 11.178-27.297 17.714-2.705 2.033-6.319 2.856-9.874 4.281-3.413-9.821-6.916-19.583-9.36-29.602-1.533-6.284-1.474-12.957-1.665-19.913 1.913-.78 3.374-1.057 4.81-1.431 15.822-4.121 31.491-8.029 43.818-20.323 9.452-9.426 20.371-17.372 30.534-26.097 6.146-5.277 13.024-10.052 17.954-16.326 14.812-18.848 28.876-38.285 43.112-57.581 2.624-3.557 5.506-7.264 6.83-11.367 2.681-8.311 4.375-16.94 6.476-25.438 17.89.279 35.333 3.179 52.629 9.113z"></path><path fill="#ea553a" d="M1172.91 977.582c-15.775-3.127-28.215-12.377-40.227-22.43-9.005-7.537-18.43-14.605-27.071-22.532-5.07-4.651-9.143-10.443-13.361-15.955-7.647-9.994-15.291-20.007-22.456-30.345-2.361-3.407-3.792-7.72-4.696-11.829-3.119-14.183-5.848-28.453-8.651-42.704-.636-3.236-.974-6.53-1.452-10.209 15.234-2.19 30.471-3.969 46.408-5.622 2.692 5.705 4.882 11.222 6.63 16.876 2.9 9.381 7.776 17.194 15.035 24.049 7.056 6.662 13.305 14.311 19.146 22.099 9.509 12.677 23.01 19.061 36.907 25.054-1.048 7.441-2.425 14.854-3.066 22.33-.956 11.162-1.393 22.369-2.052 33.557l-1.096 17.661z"></path><path fill="#ea5453" d="M1163.123 704.036c-4.005 5.116-7.685 10.531-12.075 15.293-12.842 13.933-27.653 25.447-44.902 34.538-3.166-5.708-5.656-11.287-8.189-17.251-3.321-12.857-6.259-25.431-9.963-37.775-4.6-15.329-10.6-30.188-11.349-46.562-.314-6.871-1.275-14.287-7.114-19.644-1.047-.961-1.292-3.053-1.465-4.67l-4.092-39.927c-.554-5.245-.383-10.829-2.21-15.623-3.622-9.503-4.546-19.253-4.688-29.163-.088-6.111 1.068-12.256.782-18.344-.67-14.281-1.76-28.546-2.9-42.8-.657-8.222-1.951-16.395-2.564-24.62-.458-6.137-.285-12.322-.104-18.21.959 5.831 1.076 11.525 2.429 16.909 2.007 7.986 5.225 15.664 7.324 23.632 3.222 12.23 1.547 25.219 6.728 37.355 4.311 10.099 6.389 21.136 9.732 31.669 2.228 7.02 6.167 13.722 7.121 20.863 1.119 8.376 6.1 13.974 10.376 20.716l2.026 10.576c1.711 9.216 3.149 18.283 8.494 26.599 6.393 9.946 11.348 20.815 16.943 31.276 4.021 7.519 6.199 16.075 12.925 22.065l24.462 22.26c.556.503 1.507.571 2.274.841z"></path><path fill="#ea5b15" d="M1285.092 163.432c9.165 3.148 18.419 6.374 27.279 10.459 4.871 2.246 8.838 6.406 13.646 8.851 5.446 2.77 11.801 3.874 17.011 6.965 11.514 6.831 24.097 9.942 36.968 12.471 1.78.35 3.777.576 5.213 1.542 10.784 7.255 23.448 9.114 35.622 11.834 9.977 2.23 18.529 6.703 26.988 11.898 5.233 3.214 10.76 5.983 15.798 9.468 4.14 2.864 7.962 6.279 11.551 9.827 5.076 5.02 10.056 10.181 14.624 15.658 5.822 6.98 11.119 14.395 16.78 21.513 4.531 5.698 9.267 11.233 14.222 16.987-10.005 5.806-20.07 12.004-30.719 16.943-7.694 3.569-16.163 5.464-24.688 7.669-2.878-7.088-5.352-13.741-7.833-20.392-.802-2.15-1.244-4.55-2.498-6.396-4.548-6.7-9.712-12.999-14.011-19.847-6.672-10.627-15.34-18.93-26.063-25.376-9.357-5.625-18.367-11.824-27.644-17.587-6.436-3.997-12.902-8.006-19.659-11.405-5.123-2.577-11.107-3.536-16.046-6.37-17.187-9.863-35.13-17.887-54.031-23.767-4.403-1.37-8.953-2.267-13.436-3.382l.926-27.565z"></path><path fill="#ea504b" d="M1098 737l7.789 16.893c-15.04 9.272-31.679 15.004-49.184 17.995-9.464 1.617-19.122 2.097-29.151 3.019-.457-10.636-.18-21.211-.544-31.764-.273-7.888-.409-15.883-4.736-23.103-1.16-1.936-1.162-4.805-1.06-7.219l1.787-36.207c.182-8.103-.993-16.237-.811-24.34.365-16.236 1.253-32.461 1.908-48.69.484-12 .942-24.001 1.98-36.069 5.57 10.19 10.632 20.42 15.528 30.728 1.122 2.362 2.587 5.09 2.339 7.488-1.536 14.819 5.881 26.839 12.962 38.33 10.008 16.241 16.417 33.54 20.331 51.964 2.285 10.756 4.729 21.394 11.958 30.165L1098 737z"></path><path fill="#f6a320" d="M1865.78 822.529c-1.849 8.846-3.544 17.475-6.224 25.786-1.323 4.102-4.206 7.81-6.83 11.367l-43.112 57.581c-4.93 6.273-11.808 11.049-17.954 16.326-10.162 8.725-21.082 16.671-30.534 26.097-12.327 12.294-27.997 16.202-43.818 20.323-1.436.374-2.897.651-4.744.986-1.107-17.032-1.816-34.076-2.079-51.556 1.265-.535 2.183-.428 2.888-.766 10.596-5.072 20.8-11.059 32.586-13.273 1.69-.317 3.307-1.558 4.732-2.662l26.908-21.114c4.992-4.003 11.214-7.393 14.381-12.585 11.286-18.5 22.363-37.263 27.027-58.87l36.046 1.811c3.487.165 6.983.14 10.727.549z"></path><path fill="#ec6333" d="M318.448 922.814c-6.374-2.074-12.56-4.058-18.412-6.765-8.379-3.876-16.906-7.675-24.617-12.668-5.239-3.392-9.69-8.381-13.609-13.352-7.87-9.983-14.953-20.582-22.699-30.666-8.061-10.493-13.909-22.097-18.636-34.358-.595-1.543-1.486-2.972-2.382-4.783 6.84-1.598 13.797-3.023 20.807-4.106 18.852-2.912 36.433-9.493 53.737-17.819.697.888.889 1.555 1.292 2.051l17.921 21.896c4.14 4.939 8.06 10.191 12.862 14.412 5.67 4.984 12.185 9.007 18.334 13.447-8.937 16.282-16.422 33.178-20.696 51.31-1.638 6.951-2.402 14.107-3.903 21.403z"></path><path fill="#f49700" d="M623.467 326.903c2.893-10.618 5.584-21.446 9.833-31.623 3.013-7.217 7.924-13.696 12.358-20.254 6.375-9.43 12.026-19.67 19.886-27.705 14.12-14.434 28.063-29.453 47.926-36.784 6.581-2.429 12.344-6.994 18.774-9.942 3.975-1.822 8.503-2.436 13.186-3.592 1.947 18.557 3.248 37.15 8.307 55.686-15.453 7.931-28.853 18.092-40.46 29.996-10.417 10.683-19.109 23.111-28.013 35.175-3.238 4.388-4.888 9.948-7.262 14.973-17.803-3.987-35.767-6.498-54.535-5.931z"></path><path fill="#ea544c" d="M1097.956 736.615c-2.925-3.218-5.893-6.822-8.862-10.425-7.229-8.771-9.672-19.409-11.958-30.165-3.914-18.424-10.323-35.722-20.331-51.964-7.081-11.491-14.498-23.511-12.962-38.33.249-2.398-1.217-5.126-2.339-7.488l-15.232-31.019-3.103-34.338c-.107-1.316-.041-2.653.031-3.975.233-4.294.756-8.59.702-12.879-.072-5.713-.776-11.417-.861-17.13l-.116-30.733c-.329-10.088-1.926-20.166-1.768-30.23.23-14.674.599-29.31-1.162-44.341 9.369-.803 18.741-1.179 28.558-1.074 1.446 15.814 2.446 31.146 3.446 46.478.108 6.163-.064 12.348.393 18.485.613 8.225 1.907 16.397 2.564 24.62l2.9 42.8c.286 6.088-.869 12.234-.782 18.344.142 9.91 1.066 19.661 4.688 29.163 1.827 4.794 1.657 10.377 2.21 15.623l4.092 39.927c.172 1.617.417 3.71 1.465 4.67 5.839 5.357 6.8 12.773 7.114 19.644.749 16.374 6.749 31.233 11.349 46.562 3.704 12.344 6.642 24.918 9.963 37.775z"></path><path fill="#ec5c61" d="M1204.835 568.008c1.254 25.351-1.675 50.16-10.168 74.61-8.598-4.883-18.177-8.709-24.354-15.59-7.44-8.289-13.929-17.442-21.675-25.711-8.498-9.072-16.731-18.928-21.084-31.113-.54-1.513-1.691-2.807-2.594-4.564-4.605-9.247-7.706-18.544-7.96-29.09-.835-7.149-1.214-13.944-2.609-20.523-2.215-10.454-5.626-20.496-7.101-31.302-2.513-18.419-7.207-36.512-5.347-55.352.24-2.43-.17-4.949-.477-7.402l-4.468-34.792c2.723-.379 5.446-.757 8.585-.667 1.749 8.781 2.952 17.116 4.448 25.399 1.813 10.037 3.64 20.084 5.934 30.017 1.036 4.482 3.953 8.573 4.73 13.064 1.794 10.377 4.73 20.253 9.272 29.771 2.914 6.105 4.761 12.711 7.496 18.912 2.865 6.496 6.264 12.755 9.35 19.156 3.764 7.805 7.667 15.013 16.1 19.441 7.527 3.952 13.713 10.376 20.983 14.924 6.636 4.152 13.932 7.25 20.937 10.813z"></path><path fill="#ed676f" d="M1140.75 379.231c18.38-4.858 36.222-11.21 53.979-18.971 3.222 3.368 5.693 6.744 8.719 9.512 2.333 2.134 5.451 5.07 8.067 4.923 7.623-.429 12.363 2.688 17.309 8.215 5.531 6.18 12.744 10.854 19.224 16.184-5.121 7.193-10.461 14.241-15.323 21.606-13.691 20.739-22.99 43.255-26.782 67.926-.543 3.536-1.281 7.043-2.366 10.925-14.258-6.419-26.411-14.959-32.731-29.803-1.087-2.553-2.596-4.93-3.969-7.355-1.694-2.993-3.569-5.89-5.143-8.943-1.578-3.062-2.922-6.249-4.295-9.413-1.57-3.621-3.505-7.163-4.47-10.946-1.257-4.93-.636-10.572-2.725-15.013-5.831-12.397-7.467-25.628-9.497-38.847z"></path><path fill="#ed656e" d="M1254.103 647.439c5.325.947 10.603 2.272 15.847 3.722 5.101 1.41 10.376 2.475 15.175 4.596 3.237 1.431 5.942 4.262 8.589 6.777 2.592 2.462 4.77 5.355 7.207 7.987 1.804 1.948 4.557 3.453 5.461 5.723 3.51 8.817 11.581 11.307 19.059 14.735 1.053.483 2.116.963 3.214 1.327 9.172 3.043 13.818 8.587 14.889 18.979.715 6.935 5.607 13.679 9.479 19.987 4.623 7.533 9.175 14.819 9.091 24.116-.023 2.55 1.21 5.111 1.874 8.055-19.861 2.555-39.795 4.296-59.597 9.09l-11.596-23.203c-1.107-2.169-2.526-4.353-4.307-5.975-7.349-6.694-14.863-13.209-22.373-19.723l-17.313-14.669c-2.776-2.245-5.935-4.017-8.92-6.003l11.609-38.185c1.508-5.453 1.739-11.258 2.613-17.336z"></path><path fill="#ec6168" d="M1140.315 379.223c2.464 13.227 4.101 26.459 9.931 38.856 2.089 4.441 1.468 10.083 2.725 15.013.965 3.783 2.9 7.325 4.47 10.946 1.372 3.164 2.716 6.351 4.295 9.413 1.574 3.053 3.449 5.95 5.143 8.943 1.372 2.425 2.882 4.803 3.969 7.355 6.319 14.844 18.473 23.384 32.641 30.212.067 5.121-.501 10.201-.435 15.271l.985 38.117c.151 4.586.616 9.162.868 14.201-7.075-3.104-14.371-6.202-21.007-10.354-7.269-4.548-13.456-10.972-20.983-14.924-8.434-4.428-12.337-11.637-16.1-19.441-3.087-6.401-6.485-12.66-9.35-19.156-2.735-6.201-4.583-12.807-7.496-18.912-4.542-9.518-7.477-19.394-9.272-29.771-.777-4.491-3.694-8.581-4.73-13.064-2.294-9.933-4.121-19.98-5.934-30.017-1.496-8.283-2.699-16.618-4.036-25.335 10.349-2.461 20.704-4.511 31.054-6.582.957-.191 1.887-.515 3.264-.769z"></path><path fill="#e94c28" d="M922 537c-6.003 11.784-11.44 23.81-19.66 34.428-6.345 8.196-11.065 17.635-17.206 26.008-4.339 5.916-9.828 10.992-14.854 16.397-.776.835-1.993 1.279-2.71 2.147-9.439 11.437-22.008 18.427-35.357 24.929-4.219-10.885-6.942-22.155-7.205-33.905l-.514-49.542c7.441-2.893 14.452-5.197 21.334-7.841 1.749-.672 3.101-2.401 4.604-3.681 6.749-5.745 12.845-12.627 20.407-16.944 7.719-4.406 14.391-9.101 18.741-16.889.626-1.122 1.689-2.077 2.729-2.877 7.197-5.533 12.583-12.51 16.906-20.439.68-1.247 2.495-1.876 4.105-2.651 2.835 1.408 5.267 2.892 7.884 3.892 3.904 1.491 4.392 3.922 2.833 7.439-1.47 3.318-2.668 6.756-4.069 10.106-1.247 2.981-.435 5.242 2.413 6.544 2.805 1.282 3.125 3.14 1.813 5.601l-6.907 12.799L922 537z"></path><path fill="#eb5659" d="M1124.995 566c.868 1.396 2.018 2.691 2.559 4.203 4.353 12.185 12.586 22.041 21.084 31.113 7.746 8.269 14.235 17.422 21.675 25.711 6.176 6.881 15.756 10.707 24.174 15.932-6.073 22.316-16.675 42.446-31.058 60.937-1.074-.131-2.025-.199-2.581-.702l-24.462-22.26c-6.726-5.99-8.904-14.546-12.925-22.065-5.594-10.461-10.55-21.33-16.943-31.276-5.345-8.315-6.783-17.383-8.494-26.599-.63-3.394-1.348-6.772-1.738-10.848-.371-6.313-1.029-11.934-1.745-18.052l6.34 4.04 1.288-.675-2.143-15.385 9.454 1.208v-8.545L1124.995 566z"></path><path fill="#f5a02d" d="M1818.568 820.096c-4.224 21.679-15.302 40.442-26.587 58.942-3.167 5.192-9.389 8.582-14.381 12.585l-26.908 21.114c-1.425 1.104-3.042 2.345-4.732 2.662-11.786 2.214-21.99 8.201-32.586 13.273-.705.338-1.624.231-2.824.334a824.35 824.35 0 0 1-8.262-42.708c4.646-2.14 9.353-3.139 13.269-5.47 5.582-3.323 11.318-6.942 15.671-11.652 7.949-8.6 14.423-18.572 22.456-27.081 8.539-9.046 13.867-19.641 18.325-30.922l46.559 8.922z"></path><path fill="#eb5a57" d="M1124.96 565.639c-5.086-4.017-10.208-8.395-15.478-12.901v8.545l-9.454-1.208 2.143 15.385-1.288.675-6.34-4.04c.716 6.118 1.375 11.74 1.745 17.633-4.564-6.051-9.544-11.649-10.663-20.025-.954-7.141-4.892-13.843-7.121-20.863-3.344-10.533-5.421-21.57-9.732-31.669-5.181-12.135-3.506-25.125-6.728-37.355-2.099-7.968-5.317-15.646-7.324-23.632-1.353-5.384-1.47-11.078-2.429-16.909l-3.294-46.689a278.63 278.63 0 0 1 27.57-2.084c2.114 12.378 3.647 24.309 5.479 36.195 1.25 8.111 2.832 16.175 4.422 24.23 1.402 7.103 2.991 14.169 4.55 21.241 1.478 6.706.273 14.002 4.6 20.088 5.401 7.597 7.176 16.518 9.467 25.337 1.953 7.515 5.804 14.253 11.917 19.406.254 10.095 3.355 19.392 7.96 28.639z"></path><path fill="#ea541c" d="M911.651 810.999c-2.511 10.165-5.419 20.146-8.2 30.162-2.503 9.015-7.37 16.277-14.364 22.612-6.108 5.533-10.917 12.475-16.796 18.293-6.942 6.871-14.354 13.24-19.083 22.03-.644 1.196-2.222 1.889-3.705 2.857-2.39-7.921-4.101-15.991-6.566-23.823-5.451-17.323-12.404-33.976-23.414-48.835l21.627-21.095c3.182-3.29 5.532-7.382 8.295-11.083l10.663-14.163c9.528 4.78 18.925 9.848 28.625 14.247 7.324 3.321 15.036 5.785 22.917 8.799z"></path><path fill="#eb5d19" d="M1284.092 191.421c4.557.69 9.107 1.587 13.51 2.957 18.901 5.881 36.844 13.904 54.031 23.767 4.938 2.834 10.923 3.792 16.046 6.37 6.757 3.399 13.224 7.408 19.659 11.405l27.644 17.587c10.723 6.446 19.392 14.748 26.063 25.376 4.299 6.848 9.463 13.147 14.011 19.847 1.254 1.847 1.696 4.246 2.498 6.396l7.441 20.332c-11.685 1.754-23.379 3.133-35.533 4.037-.737-2.093-.995-3.716-1.294-5.33-3.157-17.057-14.048-30.161-23.034-44.146-3.027-4.71-7.786-8.529-12.334-11.993-9.346-7.116-19.004-13.834-28.688-20.491-6.653-4.573-13.311-9.251-20.431-13.002-8.048-4.24-16.479-7.85-24.989-11.091-11.722-4.465-23.673-8.328-35.527-12.449l.927-19.572z"></path><path fill="#eb5e24" d="M1283.09 211.415c11.928 3.699 23.88 7.562 35.602 12.027 8.509 3.241 16.941 6.852 24.989 11.091 7.12 3.751 13.778 8.429 20.431 13.002 9.684 6.657 19.342 13.375 28.688 20.491 4.548 3.463 9.307 7.283 12.334 11.993 8.986 13.985 19.877 27.089 23.034 44.146.299 1.615.557 3.237.836 5.263-13.373-.216-26.749-.839-40.564-1.923-2.935-9.681-4.597-18.92-12.286-26.152-15.577-14.651-30.4-30.102-45.564-45.193-.686-.683-1.626-1.156-2.516-1.584l-47.187-22.615 2.203-20.546z"></path><path fill="#e9511f" d="M913 486.001c-1.29.915-3.105 1.543-3.785 2.791-4.323 7.929-9.709 14.906-16.906 20.439-1.04.8-2.103 1.755-2.729 2.877-4.35 7.788-11.022 12.482-18.741 16.889-7.562 4.317-13.658 11.199-20.407 16.944-1.503 1.28-2.856 3.009-4.604 3.681-6.881 2.643-13.893 4.948-21.262 7.377-.128-11.151.202-22.302.378-33.454.03-1.892-.6-3.795-.456-6.12 13.727-1.755 23.588-9.527 33.278-17.663 2.784-2.337 6.074-4.161 8.529-6.784l29.057-31.86c1.545-1.71 3.418-3.401 4.221-5.459 5.665-14.509 11.49-28.977 16.436-43.736 2.817-8.407 4.074-17.338 6.033-26.032 5.039.714 10.078 1.427 15.536 2.629-.909 8.969-2.31 17.438-3.546 25.931-2.41 16.551-5.84 32.839-11.991 48.461L913 486.001z"></path><path fill="#ea5741" d="M1179.451 903.828c-14.224-5.787-27.726-12.171-37.235-24.849-5.841-7.787-12.09-15.436-19.146-22.099-7.259-6.854-12.136-14.667-15.035-24.049-1.748-5.654-3.938-11.171-6.254-17.033 15.099-4.009 30.213-8.629 44.958-15.533l28.367 36.36c6.09 8.015 13.124 14.75 22.72 18.375-7.404 14.472-13.599 29.412-17.48 45.244-.271 1.106-.382 2.25-.895 3.583z"></path><path fill="#ea522a" d="M913.32 486.141c2.693-7.837 5.694-15.539 8.722-23.231 6.151-15.622 9.581-31.91 11.991-48.461l3.963-25.861c7.582.317 15.168 1.031 22.748 1.797 4.171.421 8.333.928 12.877 1.596-.963 11.836-.398 24.125-4.102 34.953-5.244 15.33-6.794 31.496-12.521 46.578-2.692 7.09-4.849 14.445-8.203 21.206-4.068 8.201-9.311 15.81-13.708 23.86-1.965 3.597-3.154 7.627-4.609 11.492-1.385 3.68-3.666 6.265-8.114 6.89-1.994-1.511-3.624-3.059-5.077-4.44l6.907-12.799c1.313-2.461.993-4.318-1.813-5.601-2.849-1.302-3.66-3.563-2.413-6.544 1.401-3.35 2.599-6.788 4.069-10.106 1.558-3.517 1.071-5.948-2.833-7.439-2.617-1-5.049-2.484-7.884-3.892z"></path><path fill="#eb5e24" d="M376.574 714.118c12.053 6.538 20.723 16.481 29.081 26.814 1.945 2.404 4.537 4.352 7.047 6.218 8.24 6.125 10.544 15.85 14.942 24.299.974 1.871 1.584 3.931 2.376 6.29-7.145 3.719-14.633 6.501-21.386 10.517-9.606 5.713-18.673 12.334-28.425 18.399-3.407-3.73-6.231-7.409-9.335-10.834l-30.989-33.862c11.858-11.593 22.368-24.28 31.055-38.431 1.86-3.031 3.553-6.164 5.632-9.409z"></path><path fill="#e95514" d="M859.962 787.636c-3.409 5.037-6.981 9.745-10.516 14.481-2.763 3.701-5.113 7.792-8.295 11.083-6.885 7.118-14.186 13.834-21.65 20.755-13.222-17.677-29.417-31.711-48.178-42.878-.969-.576-2.068-.934-3.27-1.709 6.28-8.159 12.733-15.993 19.16-23.849 1.459-1.783 2.718-3.738 4.254-5.448l18.336-19.969c4.909 5.34 9.619 10.738 14.081 16.333 9.72 12.19 21.813 21.566 34.847 29.867.411.262.725.674 1.231 1.334z"></path><path fill="#eb5f2d" d="M339.582 762.088l31.293 33.733c3.104 3.425 5.928 7.104 9.024 10.979-12.885 11.619-24.548 24.139-33.899 38.704-.872 1.359-1.56 2.837-2.644 4.428-6.459-4.271-12.974-8.294-18.644-13.278-4.802-4.221-8.722-9.473-12.862-14.412l-17.921-21.896c-.403-.496-.595-1.163-.926-2.105 16.738-10.504 32.58-21.87 46.578-36.154z"></path><path fill="#f28d00" d="M678.388 332.912c1.989-5.104 3.638-10.664 6.876-15.051 8.903-12.064 17.596-24.492 28.013-35.175 11.607-11.904 25.007-22.064 40.507-29.592 4.873 11.636 9.419 23.412 13.67 35.592-5.759 4.084-11.517 7.403-16.594 11.553-4.413 3.607-8.124 8.092-12.023 12.301-5.346 5.772-10.82 11.454-15.782 17.547-3.929 4.824-7.17 10.208-10.716 15.344l-33.95-12.518z"></path><path fill="#f08369" d="M1580.181 771.427c-.191-.803-.322-1.377-.119-1.786 5.389-10.903 9.084-22.666 18.181-31.587 6.223-6.103 11.276-13.385 17.286-19.727 3.117-3.289 6.933-6.105 10.869-8.384 6.572-3.806 13.492-7.009 20.461-10.752 1.773 3.23 3.236 6.803 4.951 10.251l12.234 24.993c-1.367 1.966-2.596 3.293-3.935 4.499-7.845 7.07-16.315 13.564-23.407 21.32-6.971 7.623-12.552 16.517-18.743 24.854l-37.777-13.68z"></path><path fill="#f18b5e" d="M1618.142 785.4c6.007-8.63 11.588-17.524 18.559-25.147 7.092-7.755 15.562-14.249 23.407-21.32 1.338-1.206 2.568-2.534 3.997-4.162l28.996 33.733c1.896 2.205 4.424 3.867 6.66 6.394-6.471 7.492-12.967 14.346-19.403 21.255l-18.407 19.953c-12.958-12.409-27.485-22.567-43.809-30.706z"></path><path fill="#f49c3a" d="M1771.617 811.1c-4.066 11.354-9.394 21.949-17.933 30.995-8.032 8.509-14.507 18.481-22.456 27.081-4.353 4.71-10.089 8.329-15.671 11.652-3.915 2.331-8.623 3.331-13.318 5.069-4.298-9.927-8.255-19.998-12.1-30.743 4.741-4.381 9.924-7.582 13.882-11.904 7.345-8.021 14.094-16.603 20.864-25.131 4.897-6.168 9.428-12.626 14.123-18.955l32.61 11.936z"></path><path fill="#f08000" d="M712.601 345.675c3.283-5.381 6.524-10.765 10.453-15.589 4.962-6.093 10.435-11.774 15.782-17.547 3.899-4.21 7.61-8.695 12.023-12.301 5.078-4.15 10.836-7.469 16.636-11.19a934.12 934.12 0 0 1 23.286 35.848c-4.873 6.234-9.676 11.895-14.63 17.421l-25.195 27.801c-11.713-9.615-24.433-17.645-38.355-24.443z"></path><path fill="#ed6e04" d="M751.11 370.42c8.249-9.565 16.693-18.791 25.041-28.103 4.954-5.526 9.757-11.187 14.765-17.106 7.129 6.226 13.892 13.041 21.189 19.225 5.389 4.567 11.475 8.312 17.53 12.92-5.51 7.863-10.622 15.919-17.254 22.427-8.881 8.716-18.938 16.233-28.49 24.264-5.703-6.587-11.146-13.427-17.193-19.682-4.758-4.921-10.261-9.121-15.587-13.944z"></path><path fill="#ea541c" d="M921.823 385.544c-1.739 9.04-2.995 17.971-5.813 26.378-4.946 14.759-10.771 29.227-16.436 43.736-.804 2.058-2.676 3.749-4.221 5.459l-29.057 31.86c-2.455 2.623-5.745 4.447-8.529 6.784-9.69 8.135-19.551 15.908-33.208 17.237-1.773-9.728-3.147-19.457-4.091-29.6l36.13-16.763c.581-.267 1.046-.812 1.525-1.269 8.033-7.688 16.258-15.19 24.011-23.152 4.35-4.467 9.202-9.144 11.588-14.69 6.638-15.425 15.047-30.299 17.274-47.358 3.536.344 7.072.688 10.829 1.377z"></path><path fill="#f3944d" d="M1738.688 798.998c-4.375 6.495-8.906 12.953-13.803 19.121-6.771 8.528-13.519 17.11-20.864 25.131-3.958 4.322-9.141 7.523-13.925 11.54-8.036-13.464-16.465-26.844-27.999-38.387 5.988-6.951 12.094-13.629 18.261-20.25l19.547-20.95 38.783 23.794z"></path><path fill="#ec6168" d="M1239.583 703.142c3.282 1.805 6.441 3.576 9.217 5.821 5.88 4.755 11.599 9.713 17.313 14.669l22.373 19.723c1.781 1.622 3.2 3.806 4.307 5.975 3.843 7.532 7.477 15.171 11.194 23.136-10.764 4.67-21.532 8.973-32.69 12.982l-22.733-27.366c-2.003-2.416-4.096-4.758-6.194-7.093-3.539-3.94-6.927-8.044-10.74-11.701-2.57-2.465-5.762-4.283-8.675-6.39l16.627-29.755z"></path><path fill="#ec663e" d="M1351.006 332.839l-28.499 10.33c-.294.107-.533.367-1.194.264-11.067-19.018-27.026-32.559-44.225-44.855-4.267-3.051-8.753-5.796-13.138-8.682l9.505-24.505c10.055 4.069 19.821 8.227 29.211 13.108 3.998 2.078 7.299 5.565 10.753 8.598 3.077 2.701 5.743 5.891 8.926 8.447 4.116 3.304 9.787 5.345 12.62 9.432 6.083 8.777 10.778 18.517 16.041 27.863z"></path><path fill="#eb5e5b" d="M1222.647 733.051c3.223 1.954 6.415 3.771 8.985 6.237 3.813 3.658 7.201 7.761 10.74 11.701l6.194 7.093 22.384 27.409c-13.056 6.836-25.309 14.613-36.736 24.161l-39.323-44.7 24.494-27.846c1.072-1.224 1.974-2.598 3.264-4.056z"></path><path fill="#ea580e" d="M876.001 376.171c5.874 1.347 11.748 2.694 17.812 4.789-.81 5.265-2.687 9.791-2.639 14.296.124 11.469-4.458 20.383-12.73 27.863-2.075 1.877-3.659 4.286-5.668 6.248l-22.808 21.967c-.442.422-1.212.488-1.813.757l-23.113 10.389-9.875 4.514c-2.305-6.09-4.609-12.181-6.614-18.676 7.64-4.837 15.567-8.54 22.18-13.873 9.697-7.821 18.931-16.361 27.443-25.455 5.613-5.998 12.679-11.331 14.201-20.475.699-4.2 2.384-8.235 3.623-12.345z"></path><path fill="#e95514" d="M815.103 467.384c3.356-1.894 6.641-3.415 9.94-4.903l23.113-10.389c.6-.269 1.371-.335 1.813-.757l22.808-21.967c2.008-1.962 3.593-4.371 5.668-6.248 8.272-7.48 12.854-16.394 12.73-27.863-.049-4.505 1.828-9.031 2.847-13.956 5.427.559 10.836 1.526 16.609 2.68-1.863 17.245-10.272 32.119-16.91 47.544-2.387 5.546-7.239 10.223-11.588 14.69-7.753 7.962-15.978 15.464-24.011 23.152-.478.458-.944 1.002-1.525 1.269l-36.069 16.355c-2.076-6.402-3.783-12.81-5.425-19.607z"></path><path fill="#eb620b" d="M783.944 404.402c9.499-8.388 19.556-15.905 28.437-24.621 6.631-6.508 11.744-14.564 17.575-22.273 9.271 4.016 18.501 8.375 27.893 13.43-4.134 7.07-8.017 13.778-12.833 19.731-5.785 7.15-12.109 13.917-18.666 20.376-7.99 7.869-16.466 15.244-24.731 22.832l-17.674-29.475z"></path><path fill="#ea544c" d="M1197.986 854.686c-9.756-3.309-16.79-10.044-22.88-18.059l-28.001-36.417c8.601-5.939 17.348-11.563 26.758-17.075 1.615 1.026 2.639 1.876 3.505 2.865l26.664 30.44c3.723 4.139 7.995 7.785 12.017 11.656l-18.064 26.591z"></path><path fill="#ec6333" d="M1351.41 332.903c-5.667-9.409-10.361-19.149-16.445-27.926-2.833-4.087-8.504-6.128-12.62-9.432-3.184-2.555-5.849-5.745-8.926-8.447-3.454-3.033-6.756-6.52-10.753-8.598-9.391-4.88-19.157-9.039-29.138-13.499 1.18-5.441 2.727-10.873 4.81-16.607 11.918 4.674 24.209 8.261 34.464 14.962 14.239 9.304 29.011 18.453 39.595 32.464 2.386 3.159 5.121 6.077 7.884 8.923 6.564 6.764 10.148 14.927 11.723 24.093l-20.594 4.067z"></path><path fill="#eb5e5b" d="M1117 536.549c-6.113-4.702-9.965-11.44-11.917-18.955-2.292-8.819-4.066-17.74-9.467-25.337-4.327-6.085-3.122-13.382-4.6-20.088l-4.55-21.241c-1.59-8.054-3.172-16.118-4.422-24.23l-5.037-36.129c6.382-1.43 12.777-2.462 19.582-3.443 1.906 11.646 3.426 23.24 4.878 34.842.307 2.453.717 4.973.477 7.402-1.86 18.84 2.834 36.934 5.347 55.352 1.474 10.806 4.885 20.848 7.101 31.302 1.394 6.579 1.774 13.374 2.609 20.523z"></path><path fill="#ec644b" d="M1263.638 290.071c4.697 2.713 9.183 5.458 13.45 8.509 17.199 12.295 33.158 25.836 43.873 44.907-8.026 4.725-16.095 9.106-24.83 13.372-11.633-15.937-25.648-28.515-41.888-38.689-1.609-1.008-3.555-1.48-5.344-2.2 2.329-3.852 4.766-7.645 6.959-11.573l7.78-14.326z"></path><path fill="#eb5f2d" d="M1372.453 328.903c-2.025-9.233-5.608-17.396-12.172-24.16-2.762-2.846-5.498-5.764-7.884-8.923-10.584-14.01-25.356-23.16-39.595-32.464-10.256-6.701-22.546-10.289-34.284-15.312.325-5.246 1.005-10.444 2.027-15.863l47.529 22.394c.89.428 1.83.901 2.516 1.584l45.564 45.193c7.69 7.233 9.352 16.472 11.849 26.084-5.032.773-10.066 1.154-15.55 1.466z"></path><path fill="#e95a0f" d="M801.776 434.171c8.108-7.882 16.584-15.257 24.573-23.126 6.558-6.459 12.881-13.226 18.666-20.376 4.817-5.953 8.7-12.661 13.011-19.409 5.739 1.338 11.463 3.051 17.581 4.838-.845 4.183-2.53 8.219-3.229 12.418-1.522 9.144-8.588 14.477-14.201 20.475-8.512 9.094-17.745 17.635-27.443 25.455-6.613 5.333-14.54 9.036-22.223 13.51-2.422-4.469-4.499-8.98-6.735-13.786z"></path><path fill="#eb5e5b" d="M1248.533 316.002c2.155.688 4.101 1.159 5.71 2.168 16.24 10.174 30.255 22.752 41.532 38.727-7.166 5.736-14.641 11.319-22.562 16.731-1.16-1.277-1.684-2.585-2.615-3.46l-38.694-36.2 14.203-15.029c.803-.86 1.38-1.93 2.427-2.936z"></path><path fill="#eb5a57" d="M1216.359 827.958c-4.331-3.733-8.603-7.379-12.326-11.518l-26.664-30.44c-.866-.989-1.89-1.839-3.152-2.902 6.483-6.054 13.276-11.959 20.371-18.005l39.315 44.704c-5.648 6.216-11.441 12.12-17.544 18.161z"></path><path fill="#ec6168" d="M1231.598 334.101l38.999 36.066c.931.876 1.456 2.183 2.303 3.608-4.283 4.279-8.7 8.24-13.769 12.091-4.2-3.051-7.512-6.349-11.338-8.867-12.36-8.136-22.893-18.27-32.841-29.093l16.646-13.805z"></path><path fill="#ed656e" d="M1214.597 347.955c10.303 10.775 20.836 20.908 33.196 29.044 3.825 2.518 7.137 5.816 10.992 8.903-3.171 4.397-6.65 8.648-10.432 13.046-6.785-5.184-13.998-9.858-19.529-16.038-4.946-5.527-9.687-8.644-17.309-8.215-2.616.147-5.734-2.788-8.067-4.923-3.026-2.769-5.497-6.144-8.35-9.568 6.286-4.273 12.715-8.237 19.499-12.25z"></path></svg>
1667
+ </p>
1668
+
1669
+ <p align="center">
1670
+ <b>The crispy sentence embedding family from <a href="https://mixedbread.ai"><b>Mixedbread</b></a>.</b>
1671
+ </p>
1672
+
1673
+ # mixedbread-ai/mxbai-embed-xsmall-v1
1674
+
1675
+ This model is an open-source English embedding model developed by [Mixedbread](https://mixedbread.ai). It's built upon [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) and trained with the [AnglE loss](https://arxiv.org/abs/2309.12871) and [Espresso](https://arxiv.org/abs/2402.14776). Read more details in our [blog post](https://www.mixedbread.ai/blog/mxbai-embed-xsmall-v1).
1676
+
1677
+ **In a bread loaf**:
1678
+ - State-of-the-art performance
1679
+ - Supports both [binary quantization and Matryoshka Representation Learning (MRL)](#binary-quantization-and-matryoshka).
1680
+ - Optimized for retrieval tasks
1681
+
1682
+ ## Performance
1683
+
1684
+
1685
+ ## Binary Quantization and Matryoshka
1686
+
1687
+ Our model supports both [binary quantization](https://www.mixedbread.ai/blog/binary-quantization) and [Matryoshka Representation Learning (MRL)](https://www.mixedbread.ai/blog/mxbai-embed-2d-large-v1), allowing for significant efficiency gains:
1688
+
1689
+ - Binary quantization: Retains 93.9% of performance while increasing efficiency by a factor of 32
1690
+ - MRL: A 33% reduction in vector size still leaves 96.2% of model performance
1691
+
1692
+ These optimizations can lead to substantial reductions in infrastructure costs for cloud computing and vector databases. Read more [here](https://www.mixedbread.ai/blog/binary-mrl).
1693
+
1694
+ ## Quickstart
1695
+
1696
+ Here are several ways to produce German sentence embeddings using our model.
1697
+
1698
+ <details>
1699
+ <summary> angle-emb </summary>
1700
+
1701
+ ```bash
1702
+ pip install -U angle-emb
1703
+ ```
1704
+
1705
+ ```python
1706
+ from angle_emb import AnglE
1707
+ from angle_emb.utils import cosine_similarity
1708
+
1709
+ # 1. Specify preferred dimensions
1710
+ dimensions = 384
1711
+
1712
+ # 2. Load model and set pooling strategy to avg
1713
+ model = AnglE.from_pretrained(
1714
+ "mixedbread-ai/mxbai-embed-xsmall-v1",
1715
+ pooling_strategy='avg').cuda()
1716
+
1717
+ query = 'A man is eating a piece of bread'
1718
+
1719
+ docs = [
1720
+ query,
1721
+ "A man is eating food.",
1722
+ "A man is eating pasta.",
1723
+ "The girl is carrying a baby.",
1724
+ "A man is riding a horse.",
1725
+ ]
1726
+
1727
+ # 3. Encode
1728
+ embeddings = model.encode(docs, embedding_size=dimensions)
1729
+
1730
+ for doc, emb in zip(docs[1:], embeddings[1:]):
1731
+ print(f'{query} ||| {doc}', cosine_similarity(embeddings[0], emb))
1732
+ ```
1733
+ </details>
1734
+
1735
+ <details>
1736
+ <summary> Sentence Transformers </summary>
1737
+
1738
+ ```bash
1739
+ python -m pip install -U sentence-transformers
1740
+ ```
1741
+
1742
+ ```python
1743
+ from sentence_transformers import SentenceTransformer
1744
+ from sentence_transformers.util import cos_sim
1745
+
1746
+ # 1. Specify preferred dimensions
1747
+ dimensions = 384
1748
+
1749
+ # 2. Load model
1750
+ model = SentenceTransformer("mixedbread-ai/mxbai-embed-xsmall-v1", truncate_dim=dimensions)
1751
+
1752
+ query = 'A man is eating a piece of bread'
1753
+
1754
+ docs = [
1755
+ query,
1756
+ "A man is eating food.",
1757
+ "A man is eating pasta.",
1758
+ "The girl is carrying a baby.",
1759
+ "A man is riding a horse.",
1760
+ ]
1761
+
1762
+
1763
+ # 3. Encode
1764
+ embeddings = model.encode(docs)
1765
+
1766
+ similarities = cos_sim(embeddings[0], embeddings[1:])
1767
+ print('similarities:', similarities)
1768
+ ```
1769
+ </details>
1770
+
1771
+ <details>
1772
+ <summary> transformers </summary>
1773
+
1774
+ ```bash
1775
+ pip install -U transformers
1776
+ ```
1777
+
1778
+ ```python
1779
+ from typing import Dict
1780
+
1781
+ import torch
1782
+ import numpy as np
1783
+ from transformers import AutoModel, AutoTokenizer
1784
+ from sentence_transformers.util import cos_sim
1785
+
1786
+ def pooling(outputs: torch.Tensor, inputs: Dict) -> np.ndarray:
1787
+ outputs = torch.sum(
1788
+ outputs * inputs["attention_mask"][:, :, None], dim=1) / torch.sum(inputs["attention_mask"])
1789
+ return outputs.detach().cpu().numpy()
1790
+
1791
+ # 1. Load model
1792
+ model_id = 'mixedbread-ai/mxbai-embed-xsmall-v1'
1793
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
1794
+ model = AutoModel.from_pretrained(model_id).cuda()
1795
+
1796
+ query = 'A man is eating a piece of bread'
1797
+
1798
+ docs = [
1799
+ query,
1800
+ "A man is eating food.",
1801
+ "A man is eating pasta.",
1802
+ "The girl is carrying a baby.",
1803
+ "A man is riding a horse.",
1804
+ ]
1805
+
1806
+ # 2. Encode
1807
+ inputs = tokenizer(docs, padding=True, return_tensors='pt')
1808
+ for k, v in inputs.items():
1809
+ inputs[k] = v.cuda()
1810
+ outputs = model(**inputs).last_hidden_state
1811
+ embeddings = pooling(outputs, inputs)
1812
+
1813
+ # 3. Compute similarity scores
1814
+ similarities = cos_sim(embeddings[0], embeddings[1:])
1815
+ print('similarities:', similarities)
1816
+ ```
1817
+ </details>
1818
+
1819
+ <details>
1820
+ <summary>Batched API</summary>
1821
+
1822
+ ```bash
1823
+ python -m pip install batched
1824
+ ```
1825
+
1826
+ ```python
1827
+ import uvicorn
1828
+ import batched
1829
+ from fastapi import FastAPI
1830
+ from fastapi.responses import ORJSONResponse
1831
+ from sentence_transformers import SentenceTransformer
1832
+ from pydantic import BaseModel
1833
+
1834
+ app = FastAPI()
1835
+
1836
+ model = SentenceTransformer('mixedbread-ai/mxbai-embed-xsmall-v1')
1837
+ model.encode = batched.aio.dynamically(model.encode)
1838
+
1839
+ class EmbeddingsRequest(BaseModel):
1840
+ input: str | list[str]
1841
+
1842
+ @app.post("/embeddings")
1843
+ async def embeddings(request: EmbeddingsRequest):
1844
+ return ORJSONResponse({"embeddings": await model.encode(request.input)})
1845
+
1846
+ if __name__ == "__main__":
1847
+ uvicorn.run(app, host="0.0.0.0", port=8000)
1848
+ ```
1849
+ </details>
1850
+
1851
+ ## Community
1852
+
1853
+ Join our [discord community](https://www.mixedbread.ai/redirects/discord) to share your feedback and thoughts. We're here to help and always happy to discuss the exciting field of machine learning!
1854
+
1855
+ ## License
1856
+
1857
+ Apache 2.0
1858
+
1859
+ ## Citation
1860
+
1861
+ ```bibtex
1862
+ @online{xsmall2024mxbai,
1863
+ title={Every Byte Matters: Introducing mxbai-embed-xsmall-v1},
1864
+ author={Sean Lee and Julius Lipp and Rui Huang and Darius Koenig},
1865
+ year={2024},
1866
+ url={https://www.mixedbread.ai/blog/mxbai-embed-xsmall-v1},
1867
+ }
1868
+ ```
angle_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_name_or_path": "mixedbread-ai/mxbai-embed-xsmall-v1",
3
+ "max_length": 4096,
4
+ "model_kwargs": {},
5
+ "pooling_strategy": "avg",
6
+ "lora_config_kwargs": null,
7
+ "is_llm": 0,
8
+ "apply_billm": 0,
9
+ "billm_model_class": null,
10
+ "apply_lora": 0,
11
+ "tokenizer_padding_side": null,
12
+ "angle_emb_version": "0.4.12",
13
+ "apply_bfloat16": null
14
+ }
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mixedbread-ai/mxbai-embed-mini-v1",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 4096,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float16",
22
+ "transformers_version": "4.45.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": false,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.4.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a1a58f701e103c02ad3a519c04293f57e037b7a47aaac184466d6dd3e76708e
3
+ size 48190272
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff