File size: 1,470 Bytes
4dfb4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

app = FastAPI()

# Allow your frontend (adjust if deployed elsewhere)
origins = [
    "http://localhost:3000",  # Next.js frontend
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Load your trained model (swap with your own if needed)
MODEL_PATH = "./bert-bias-detector/checkpoint-4894"  # or wherever your model is saved bert-bias-detector\checkpoint-4894
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)

# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Input format
class InputText(BaseModel):
    text: str

@app.post("/predict")
async def predict_text(payload: InputText):
    inputs = tokenizer(payload.text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)

    with torch.no_grad():
        outputs = model(**inputs)

    logits = outputs.logits
    probs = logits.softmax(dim=-1)[0].tolist()

    labels = ["Left", "Center", "Right"]
    predicted_label = labels[torch.argmax(logits).item()]

    return {
        "bias_scores": probs,
        "predicted": predicted_label
    }