|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer |
|
from datasets import load_dataset, DatasetDict |
|
import torch |
|
|
|
|
|
model_name = "distilbert-base-uncased" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
print("Current Device:", torch.cuda.current_device()) |
|
|
|
dataset = load_dataset("Faith1712/allsides_text_proper_truncated") |
|
|
|
|
|
dataset = dataset["train"].train_test_split(test_size=0.1) |
|
|
|
|
|
def tokenize_function(example): |
|
return tokenizer(example["text"], padding="max_length", truncation=True, max_length=512) |
|
|
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./distilbert-bias-detector", |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=16, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
logging_dir="./logs", |
|
logging_steps=500, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_datasets["train"], |
|
eval_dataset=tokenized_datasets["test"], |
|
tokenizer=tokenizer, |
|
) |
|
|
|
|
|
trainer.train() |
|
|