Commit
·
5515605
1
Parent(s):
dcce0f8
gpt genereated readme :)
Browse files
README.md
CHANGED
@@ -7,18 +7,18 @@ tags:
|
|
7 |
- fine-tuning
|
8 |
license: mit
|
9 |
datasets:
|
10 |
-
-
|
11 |
model-index:
|
12 |
- name: Bias Detector
|
13 |
results:
|
14 |
- task:
|
15 |
type: text-classification
|
16 |
dataset:
|
17 |
-
name:
|
18 |
-
type:
|
19 |
metrics:
|
20 |
- type: accuracy
|
21 |
-
value:
|
22 |
---
|
23 |
|
24 |
# Bias Detector
|
@@ -29,10 +29,23 @@ This model is fine-tuned using **PEFT LoRA** on existing **Hugging Face models**
|
|
29 |
- **Architecture:** Transformer-based (e.g., BERT, RoBERTa)
|
30 |
- **Fine-tuning Method:** Parameter Efficient Fine-Tuning (LoRA)
|
31 |
- **Use Case:** Bias classification, text summarization, sentiment analysis
|
32 |
-
- **Dataset:** [
|
33 |
- **Training Framework:** PyTorch + Transformers
|
34 |
|
35 |
## Usage
|
36 |
To use this model, install the necessary libraries:
|
37 |
```bash
|
38 |
-
pip install transformers torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
- fine-tuning
|
8 |
license: mit
|
9 |
datasets:
|
10 |
+
- ...
|
11 |
model-index:
|
12 |
- name: Bias Detector
|
13 |
results:
|
14 |
- task:
|
15 |
type: text-classification
|
16 |
dataset:
|
17 |
+
name: ...
|
18 |
+
type: ...
|
19 |
metrics:
|
20 |
- type: accuracy
|
21 |
+
value: ...
|
22 |
---
|
23 |
|
24 |
# Bias Detector
|
|
|
29 |
- **Architecture:** Transformer-based (e.g., BERT, RoBERTa)
|
30 |
- **Fine-tuning Method:** Parameter Efficient Fine-Tuning (LoRA)
|
31 |
- **Use Case:** Bias classification, text summarization, sentiment analysis
|
32 |
+
- **Dataset:** [...](https://huggingface.co/datasets/your-dataset)
|
33 |
- **Training Framework:** PyTorch + Transformers
|
34 |
|
35 |
## Usage
|
36 |
To use this model, install the necessary libraries:
|
37 |
```bash
|
38 |
+
pip install transformers torch
|
39 |
+
```
|
40 |
+
Then load the model with:
|
41 |
+
```python
|
42 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
43 |
+
|
44 |
+
model_name = "mjwagerman/bias-detector"
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
47 |
+
|
48 |
+
text = "This is an example news headline."
|
49 |
+
inputs = tokenizer(text, return_tensors="pt")
|
50 |
+
outputs = model(**inputs)
|
51 |
+
```
|