mkahari commited on
Commit
898f026
1 Parent(s): e4e5b13

PPO LunarLander-v2 model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 245.87 +/- 25.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c0124c040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c0124c0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c0124c160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c0124c1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f6c0124c280>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c0124c310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c0124c3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c0124c430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c0124c4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c0124c550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c0124c5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6c012484e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673364194708860108, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoJCb3Syvu7qNCyvNtQojxhAk69KB6HPQAAgD8AAIA/WloEPhQwyLqGyqW75OHMOG+AU7s+ZLQ5AACAPwAAgD8axjS94YyRumOKb7ncple0SqBwurLgijgAAIA/AACAPwAZnz0KFye59/05uN4CJbIAWZ27k+JeNwAAgD8AAIA/09MPPtIdgD7GqCK+vERcvSetJL3KuBg9AAAAAAAAAACaozi9e5aOumjRGbtPftG2tblIOr4gMToAAIA/AACAP43lv72uz4O6WAMouj0YjTaq7gy712pBOQAAgD8AAIA/zXolPHtCtbqdcI+4YGGLs2WXRTlitKM3AACAPwAAgD8N4ZI94QisuotaULzrm422k89wutN9+jUAAIA/AACAP03dKz0E/to9dQRcPe0a272xISU8jQ/QPQAAAAAAAAAAGlERPew5obkbRvo31XpaMtE1SbsubRa3AACAPwAAgD8zrYE99th7urK12brcgJK1yL32uihF/DkAAIA/AACAPwDshDyFI4W5jVx8ugbaJjZhqC86II6XOQAAgD8AAIA/ja0BPnvyj7oLhxU7gcSht29cJry3hDG6AACAPwAAgD9m/AK8rn2Kuq6iTbm5H7G0aNTJOp6RazgAAIA/AACAP02QAD0prGe6QwJXu+G1wbaR4g67hVExNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJXSXxFlAY0CUhpRSlIwBbJRN6AOMAXSUR0Cbg5dXT3IudX2UKGgGaAloD0MIOPktOlmlYUCUhpRSlGgVTegDaBZHQJuGikKu0Tl1fZQoaAZoCWgPQwj9TpMZb4NnQJSGlFKUaBVN6ANoFkdAm4qfReC04XV9lChoBmgJaA9DCFMHeT0Yf2RAlIaUUpRoFU3oA2gWR0CbirnhKlHjdX2UKGgGaAloD0MIGFsIclD6J0CUhpRSlGgVTUkBaBZHQJuLptk4FRp1fZQoaAZoCWgPQwigMv59Rt1kQJSGlFKUaBVN6ANoFkdAm4u2xyGSIXV9lChoBmgJaA9DCOeoo+Nq12JAlIaUUpRoFU3oA2gWR0CbjjWnjyWidX2UKGgGaAloD0MIeuHOhRGTY0CUhpRSlGgVTegDaBZHQJuSt9nbqQl1fZQoaAZoCWgPQwgHI/YJoKpcQJSGlFKUaBVN6ANoFkdAm5MQ6ltTDXV9lChoBmgJaA9DCPXyO01mKmFAlIaUUpRoFU3oA2gWR0CbkymygPEsdX2UKGgGaAloD0MIAKlNnFxiYUCUhpRSlGgVTegDaBZHQJuW4Oc2BJ91fZQoaAZoCWgPQwhCIQIOIedgQJSGlFKUaBVN6ANoFkdAm5s+mm+Cb3V9lChoBmgJaA9DCE0QdR8AVmVAlIaUUpRoFU3oA2gWR0Cbq5F8G9pRdX2UKGgGaAloD0MIv/T256JWWkCUhpRSlGgVTegDaBZHQJvGlNN8E3d1fZQoaAZoCWgPQwgtW+uLhJViQJSGlFKUaBVN6ANoFkdAm9DBPTG5tnV9lChoBmgJaA9DCGa8rfRaQ2VAlIaUUpRoFU3oA2gWR0Cb0irnkkrxdX2UKGgGaAloD0MIy/W2mQp4XUCUhpRSlGgVTegDaBZHQJvUg7MgU111fZQoaAZoCWgPQwh7FRkdkJpcQJSGlFKUaBVN6ANoFkdAm9fp0OmR/3V9lChoBmgJaA9DCDcAGxAhYmFAlIaUUpRoFU3oA2gWR0Cb3LEgGKQ8dX2UKGgGaAloD0MIcw8J33tkZECUhpRSlGgVTegDaBZHQJvczp6hQFd1fZQoaAZoCWgPQwgs81ZdB15jQJSGlFKUaBVN6ANoFkdAm93TGLk0anV9lChoBmgJaA9DCAgAjj17smRAlIaUUpRoFU3oA2gWR0Cb3eJ1q33IdX2UKGgGaAloD0MIezL/6JtPXkCUhpRSlGgVTegDaBZHQJvgjKp1ifB1fZQoaAZoCWgPQwhZGCKnr6s5wJSGlFKUaBVNKAFoFkdAm+Thiw0O3HV9lChoBmgJaA9DCLqkaruJFmFAlIaUUpRoFU3oA2gWR0Cb5UfxMFlkdX2UKGgGaAloD0MI/tKiPsmgYECUhpRSlGgVTegDaBZHQJvlmyD7Ikt1fZQoaAZoCWgPQwha2NMO/65gQJSGlFKUaBVN6ANoFkdAm+WxC6YmcHV9lChoBmgJaA9DCMms3uF2R2JAlIaUUpRoFU3oA2gWR0Cb6RW69TP0dX2UKGgGaAloD0MIP8iyYGLRZECUhpRSlGgVTegDaBZHQJvsuNHYpUh1fZQoaAZoCWgPQwid81McByhkQJSGlFKUaBVN6ANoFkdAm/qw5myxA3V9lChoBmgJaA9DCLXdBN+0q2NAlIaUUpRoFU3oA2gWR0CcFDQqqfe2dX2UKGgGaAloD0MIzGPNyCBKZECUhpRSlGgVTegDaBZHQJwdA//vOQh1fZQoaAZoCWgPQwivQV96eyNmQJSGlFKUaBVN6ANoFkdAnB4wcPvrnnV9lChoBmgJaA9DCKwBSkON21xAlIaUUpRoFU3oA2gWR0CcI0CZ4Oc2dX2UKGgGaAloD0MIO1ESEmmSbECUhpRSlGgVTWkCaBZHQJwk+sLfDUF1fZQoaAZoCWgPQwhdN6W8Vi5iQJSGlFKUaBVN6ANoFkdAnCdWtMfzSXV9lChoBmgJaA9DCFFPH4E/mGFAlIaUUpRoFU3oA2gWR0CcJ3Rbr1M/dX2UKGgGaAloD0MIqDej5qtbXUCUhpRSlGgVTegDaBZHQJwoOpKjBVN1fZQoaAZoCWgPQwjul09WDI1jQJSGlFKUaBVN6ANoFkdAnChKKUFB6nV9lChoBmgJaA9DCGYS9YJP+WNAlIaUUpRoFU3oA2gWR0CcKms6q815dX2UKGgGaAloD0MIAwr19BHuWkCUhpRSlGgVTegDaBZHQJwuEEvCdjJ1fZQoaAZoCWgPQwjrw3qjViRmQJSGlFKUaBVN6ANoFkdAnC5qFqSHM3V9lChoBmgJaA9DCHo2qz5XSmJAlIaUUpRoFU3oA2gWR0CcLroKUmlZdX2UKGgGaAloD0MICfmgZzNnZECUhpRSlGgVTegDaBZHQJwuyyNXHR11fZQoaAZoCWgPQwhvn1VmyhFhQJSGlFKUaBVN6ANoFkdAnDIonF5v+HV9lChoBmgJaA9DCDT3kPC9vz1AlIaUUpRoFUvdaBZHQJw6RonKGL11fZQoaAZoCWgPQwiWPnRBfaJgQJSGlFKUaBVN6ANoFkdAnEYwPAfuC3V9lChoBmgJaA9DCMXjolrE9GVAlIaUUpRoFU3oA2gWR0CcYVaYNRWMdX2UKGgGaAloD0MIahg+IqbKYUCUhpRSlGgVTegDaBZHQJxsJPi1iON1fZQoaAZoCWgPQwjz5nCt9vdfQJSGlFKUaBVN6ANoFkdAnG3Ok56t1nV9lChoBmgJaA9DCIyFIXJ6b2RAlIaUUpRoFU3oA2gWR0CcdDr1uivgdX2UKGgGaAloD0MIcRx4tVxUYECUhpRSlGgVTegDaBZHQJx2hp22Xsx1fZQoaAZoCWgPQwgZV1wcFVdkQJSGlFKUaBVN6ANoFkdAnHnLzwtrbnV9lChoBmgJaA9DCDYf14YKEWBAlIaUUpRoFU3oA2gWR0CcefG7SRbKdX2UKGgGaAloD0MIW3nJ/2QeY0CUhpRSlGgVTegDaBZHQJx7JMEidJ91fZQoaAZoCWgPQwj04O6sXTVkQJSGlFKUaBVN6ANoFkdAnHs28qWkanV9lChoBmgJaA9DCIiDhCjf5GFAlIaUUpRoFU3oA2gWR0Ccfk7l7tzCdX2UKGgGaAloD0MInnsPlxwOXECUhpRSlGgVTegDaBZHQJyC+SmqHXV1fZQoaAZoCWgPQwg0oUliyQNkQJSGlFKUaBVN6ANoFkdAnINmvwEyL3V9lChoBmgJaA9DCH16bMuABl9AlIaUUpRoFU3oA2gWR0Ccg8J7LMcIdX2UKGgGaAloD0MIN+FembdiZUCUhpRSlGgVTegDaBZHQJyHnSx7iQ11fZQoaAZoCWgPQwhTeqaXmL9iQJSGlFKUaBVN6ANoFkdAnI/ebRWtEHV9lChoBmgJaA9DCAYwZeAAU3BAlIaUUpRoFU17AmgWR0CcmmGlQ/HHdX2UKGgGaAloD0MIrfpcbUUHYUCUhpRSlGgVTegDaBZHQJybJ6Z6Uqx1fZQoaAZoCWgPQwjqspjY/PxiQJSGlFKUaBVN6ANoFkdAnKG0zXSSeXV9lChoBmgJaA9DCGfw94vZnl9AlIaUUpRoFU3oA2gWR0CcvRiHZbpvdX2UKGgGaAloD0MIsoLfhhiCXECUhpRSlGgVTegDaBZHQJy+TJ9y9251fZQoaAZoCWgPQwi8QEmBhf9wQJSGlFKUaBVNQgNoFkdAnL5fEfkmyHV9lChoBmgJaA9DCLYUkPa/c2BAlIaUUpRoFU3oA2gWR0CcxU9bHIZJdX2UKGgGaAloD0MI7dKGw9KAXECUhpRSlGgVTegDaBZHQJzIRh7Vrh11fZQoaAZoCWgPQwhZwW9DjJlkQJSGlFKUaBVN6ANoFkdAnMldL+PzWnV9lChoBmgJaA9DCIkJavgWE2BAlIaUUpRoFU3oA2gWR0CcyWzbvgFYdX2UKGgGaAloD0MIOPjCZKpFZ0CUhpRSlGgVTegDaBZHQJzMiT9sJpp1fZQoaAZoCWgPQwhevB+3X/xgQJSGlFKUaBVN6ANoFkdAnNFjwUg0THV9lChoBmgJaA9DCMRfkzVqHmVAlIaUUpRoFU3oA2gWR0Cc0doDPnjidX2UKGgGaAloD0MIkh/xK9btWUCUhpRSlGgVTegDaBZHQJzSRAdGRV91fZQoaAZoCWgPQwgr+G2I8ZNgQJSGlFKUaBVN6ANoFkdAnNatrKvFFXV9lChoBmgJaA9DCK1OzlDc0nBAlIaUUpRoFU2CAmgWR0Cc2lcPe54GdX2UKGgGaAloD0MIIlM+BFXYY0CUhpRSlGgVTegDaBZHQJzfsRdyDI11fZQoaAZoCWgPQwhEbLBwkultQJSGlFKUaBVNtwFoFkdAnOORfBvaUXV9lChoBmgJaA9DCASvljszBWNAlIaUUpRoFU3oA2gWR0Cc6iKKpDNRdX2UKGgGaAloD0MImIdM+RDEYUCUhpRSlGgVTegDaBZHQJzq/0lJHy51fZQoaAZoCWgPQwh0toDQ+jJnQJSGlFKUaBVN6ANoFkdAnQ177Gecx3V9lChoBmgJaA9DCOnTKvoDJnBAlIaUUpRoFU2gAWgWR0CdDcFirksCdX2UKGgGaAloD0MIpOGUuXl4bUCUhpRSlGgVTd0DaBZHQJ0OFpblijN1fZQoaAZoCWgPQwi+wRcmU8VkQJSGlFKUaBVN6ANoFkdAnQ7QdsBQvnV9lChoBmgJaA9DCGMraFpicW1AlIaUUpRoFU2dAmgWR0CdE/uQZGaydX2UKGgGaAloD0MIZAPpYtNtXECUhpRSlGgVTegDaBZHQJ0VlKh+OOt1fZQoaAZoCWgPQwijHTf8buVhQJSGlFKUaBVN6ANoFkdAnRhP2Xb/O3V9lChoBmgJaA9DCJ5EhH8RKGNAlIaUUpRoFU3oA2gWR0CdGUzNUwSKdX2UKGgGaAloD0MIdF34wXl+YECUhpRSlGgVTegDaBZHQJ0cTk8zQ/p1fZQoaAZoCWgPQwirIXGPpQhfQJSGlFKUaBVN6ANoFkdAnSDvnOjZc3V9lChoBmgJaA9DCIdOz7uxqFpAlIaUUpRoFU3oA2gWR0CdIWWPtD2KdX2UKGgGaAloD0MIcT0K16OuXUCUhpRSlGgVTegDaBZHQJ0hyOjqOcV1fZQoaAZoCWgPQwht409UNgdwQJSGlFKUaBVNiwJoFkdAnSNXV5KODXV9lChoBmgJaA9DCJ7PgHrzGXBAlIaUUpRoFU2JAWgWR0CdI8OW0JF9dX2UKGgGaAloD0MILzArFGn+ZUCUhpRSlGgVTegDaBZHQJ0pKwNb1RN1fZQoaAZoCWgPQwhenWNA9hReQJSGlFKUaBVN6ANoFkdAnTHFBD5TInV9lChoBmgJaA9DCBSUopV7TGxAlIaUUpRoFU3TAWgWR0CdMkT6SDAadX2UKGgGaAloD0MI5Nh6hjC8cUCUhpRSlGgVTc0DaBZHQJ0203kxREZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.997, "gae_lambda": 0.96, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
mk_ppo_lunar.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1524ff03bf990d5a84938a9f8186c254a4c4eff85c75aaa4dd858b2a7aa5c455
3
+ size 147346
mk_ppo_lunar/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
mk_ppo_lunar/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c0124c040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c0124c0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c0124c160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c0124c1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6c0124c280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6c0124c310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c0124c3a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6c0124c430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c0124c4c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c0124c550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c0124c5e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6c012484e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673364194708860108,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoJCb3Syvu7qNCyvNtQojxhAk69KB6HPQAAgD8AAIA/WloEPhQwyLqGyqW75OHMOG+AU7s+ZLQ5AACAPwAAgD8axjS94YyRumOKb7ncple0SqBwurLgijgAAIA/AACAPwAZnz0KFye59/05uN4CJbIAWZ27k+JeNwAAgD8AAIA/09MPPtIdgD7GqCK+vERcvSetJL3KuBg9AAAAAAAAAACaozi9e5aOumjRGbtPftG2tblIOr4gMToAAIA/AACAP43lv72uz4O6WAMouj0YjTaq7gy712pBOQAAgD8AAIA/zXolPHtCtbqdcI+4YGGLs2WXRTlitKM3AACAPwAAgD8N4ZI94QisuotaULzrm422k89wutN9+jUAAIA/AACAP03dKz0E/to9dQRcPe0a272xISU8jQ/QPQAAAAAAAAAAGlERPew5obkbRvo31XpaMtE1SbsubRa3AACAPwAAgD8zrYE99th7urK12brcgJK1yL32uihF/DkAAIA/AACAPwDshDyFI4W5jVx8ugbaJjZhqC86II6XOQAAgD8AAIA/ja0BPnvyj7oLhxU7gcSht29cJry3hDG6AACAPwAAgD9m/AK8rn2Kuq6iTbm5H7G0aNTJOp6RazgAAIA/AACAP02QAD0prGe6QwJXu+G1wbaR4g67hVExNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJXSXxFlAY0CUhpRSlIwBbJRN6AOMAXSUR0Cbg5dXT3IudX2UKGgGaAloD0MIOPktOlmlYUCUhpRSlGgVTegDaBZHQJuGikKu0Tl1fZQoaAZoCWgPQwj9TpMZb4NnQJSGlFKUaBVN6ANoFkdAm4qfReC04XV9lChoBmgJaA9DCFMHeT0Yf2RAlIaUUpRoFU3oA2gWR0CbirnhKlHjdX2UKGgGaAloD0MIGFsIclD6J0CUhpRSlGgVTUkBaBZHQJuLptk4FRp1fZQoaAZoCWgPQwigMv59Rt1kQJSGlFKUaBVN6ANoFkdAm4u2xyGSIXV9lChoBmgJaA9DCOeoo+Nq12JAlIaUUpRoFU3oA2gWR0CbjjWnjyWidX2UKGgGaAloD0MIeuHOhRGTY0CUhpRSlGgVTegDaBZHQJuSt9nbqQl1fZQoaAZoCWgPQwgHI/YJoKpcQJSGlFKUaBVN6ANoFkdAm5MQ6ltTDXV9lChoBmgJaA9DCPXyO01mKmFAlIaUUpRoFU3oA2gWR0CbkymygPEsdX2UKGgGaAloD0MIAKlNnFxiYUCUhpRSlGgVTegDaBZHQJuW4Oc2BJ91fZQoaAZoCWgPQwhCIQIOIedgQJSGlFKUaBVN6ANoFkdAm5s+mm+Cb3V9lChoBmgJaA9DCE0QdR8AVmVAlIaUUpRoFU3oA2gWR0Cbq5F8G9pRdX2UKGgGaAloD0MIv/T256JWWkCUhpRSlGgVTegDaBZHQJvGlNN8E3d1fZQoaAZoCWgPQwgtW+uLhJViQJSGlFKUaBVN6ANoFkdAm9DBPTG5tnV9lChoBmgJaA9DCGa8rfRaQ2VAlIaUUpRoFU3oA2gWR0Cb0irnkkrxdX2UKGgGaAloD0MIy/W2mQp4XUCUhpRSlGgVTegDaBZHQJvUg7MgU111fZQoaAZoCWgPQwh7FRkdkJpcQJSGlFKUaBVN6ANoFkdAm9fp0OmR/3V9lChoBmgJaA9DCDcAGxAhYmFAlIaUUpRoFU3oA2gWR0Cb3LEgGKQ8dX2UKGgGaAloD0MIcw8J33tkZECUhpRSlGgVTegDaBZHQJvczp6hQFd1fZQoaAZoCWgPQwgs81ZdB15jQJSGlFKUaBVN6ANoFkdAm93TGLk0anV9lChoBmgJaA9DCAgAjj17smRAlIaUUpRoFU3oA2gWR0Cb3eJ1q33IdX2UKGgGaAloD0MIezL/6JtPXkCUhpRSlGgVTegDaBZHQJvgjKp1ifB1fZQoaAZoCWgPQwhZGCKnr6s5wJSGlFKUaBVNKAFoFkdAm+Thiw0O3HV9lChoBmgJaA9DCLqkaruJFmFAlIaUUpRoFU3oA2gWR0Cb5UfxMFlkdX2UKGgGaAloD0MI/tKiPsmgYECUhpRSlGgVTegDaBZHQJvlmyD7Ikt1fZQoaAZoCWgPQwha2NMO/65gQJSGlFKUaBVN6ANoFkdAm+WxC6YmcHV9lChoBmgJaA9DCMms3uF2R2JAlIaUUpRoFU3oA2gWR0Cb6RW69TP0dX2UKGgGaAloD0MIP8iyYGLRZECUhpRSlGgVTegDaBZHQJvsuNHYpUh1fZQoaAZoCWgPQwid81McByhkQJSGlFKUaBVN6ANoFkdAm/qw5myxA3V9lChoBmgJaA9DCLXdBN+0q2NAlIaUUpRoFU3oA2gWR0CcFDQqqfe2dX2UKGgGaAloD0MIzGPNyCBKZECUhpRSlGgVTegDaBZHQJwdA//vOQh1fZQoaAZoCWgPQwivQV96eyNmQJSGlFKUaBVN6ANoFkdAnB4wcPvrnnV9lChoBmgJaA9DCKwBSkON21xAlIaUUpRoFU3oA2gWR0CcI0CZ4Oc2dX2UKGgGaAloD0MIO1ESEmmSbECUhpRSlGgVTWkCaBZHQJwk+sLfDUF1fZQoaAZoCWgPQwhdN6W8Vi5iQJSGlFKUaBVN6ANoFkdAnCdWtMfzSXV9lChoBmgJaA9DCFFPH4E/mGFAlIaUUpRoFU3oA2gWR0CcJ3Rbr1M/dX2UKGgGaAloD0MIqDej5qtbXUCUhpRSlGgVTegDaBZHQJwoOpKjBVN1fZQoaAZoCWgPQwjul09WDI1jQJSGlFKUaBVN6ANoFkdAnChKKUFB6nV9lChoBmgJaA9DCGYS9YJP+WNAlIaUUpRoFU3oA2gWR0CcKms6q815dX2UKGgGaAloD0MIAwr19BHuWkCUhpRSlGgVTegDaBZHQJwuEEvCdjJ1fZQoaAZoCWgPQwjrw3qjViRmQJSGlFKUaBVN6ANoFkdAnC5qFqSHM3V9lChoBmgJaA9DCHo2qz5XSmJAlIaUUpRoFU3oA2gWR0CcLroKUmlZdX2UKGgGaAloD0MICfmgZzNnZECUhpRSlGgVTegDaBZHQJwuyyNXHR11fZQoaAZoCWgPQwhvn1VmyhFhQJSGlFKUaBVN6ANoFkdAnDIonF5v+HV9lChoBmgJaA9DCDT3kPC9vz1AlIaUUpRoFUvdaBZHQJw6RonKGL11fZQoaAZoCWgPQwiWPnRBfaJgQJSGlFKUaBVN6ANoFkdAnEYwPAfuC3V9lChoBmgJaA9DCMXjolrE9GVAlIaUUpRoFU3oA2gWR0CcYVaYNRWMdX2UKGgGaAloD0MIahg+IqbKYUCUhpRSlGgVTegDaBZHQJxsJPi1iON1fZQoaAZoCWgPQwjz5nCt9vdfQJSGlFKUaBVN6ANoFkdAnG3Ok56t1nV9lChoBmgJaA9DCIyFIXJ6b2RAlIaUUpRoFU3oA2gWR0CcdDr1uivgdX2UKGgGaAloD0MIcRx4tVxUYECUhpRSlGgVTegDaBZHQJx2hp22Xsx1fZQoaAZoCWgPQwgZV1wcFVdkQJSGlFKUaBVN6ANoFkdAnHnLzwtrbnV9lChoBmgJaA9DCDYf14YKEWBAlIaUUpRoFU3oA2gWR0CcefG7SRbKdX2UKGgGaAloD0MIW3nJ/2QeY0CUhpRSlGgVTegDaBZHQJx7JMEidJ91fZQoaAZoCWgPQwj04O6sXTVkQJSGlFKUaBVN6ANoFkdAnHs28qWkanV9lChoBmgJaA9DCIiDhCjf5GFAlIaUUpRoFU3oA2gWR0Ccfk7l7tzCdX2UKGgGaAloD0MInnsPlxwOXECUhpRSlGgVTegDaBZHQJyC+SmqHXV1fZQoaAZoCWgPQwg0oUliyQNkQJSGlFKUaBVN6ANoFkdAnINmvwEyL3V9lChoBmgJaA9DCH16bMuABl9AlIaUUpRoFU3oA2gWR0Ccg8J7LMcIdX2UKGgGaAloD0MIN+FembdiZUCUhpRSlGgVTegDaBZHQJyHnSx7iQ11fZQoaAZoCWgPQwhTeqaXmL9iQJSGlFKUaBVN6ANoFkdAnI/ebRWtEHV9lChoBmgJaA9DCAYwZeAAU3BAlIaUUpRoFU17AmgWR0CcmmGlQ/HHdX2UKGgGaAloD0MIrfpcbUUHYUCUhpRSlGgVTegDaBZHQJybJ6Z6Uqx1fZQoaAZoCWgPQwjqspjY/PxiQJSGlFKUaBVN6ANoFkdAnKG0zXSSeXV9lChoBmgJaA9DCGfw94vZnl9AlIaUUpRoFU3oA2gWR0CcvRiHZbpvdX2UKGgGaAloD0MIsoLfhhiCXECUhpRSlGgVTegDaBZHQJy+TJ9y9251fZQoaAZoCWgPQwi8QEmBhf9wQJSGlFKUaBVNQgNoFkdAnL5fEfkmyHV9lChoBmgJaA9DCLYUkPa/c2BAlIaUUpRoFU3oA2gWR0CcxU9bHIZJdX2UKGgGaAloD0MI7dKGw9KAXECUhpRSlGgVTegDaBZHQJzIRh7Vrh11fZQoaAZoCWgPQwhZwW9DjJlkQJSGlFKUaBVN6ANoFkdAnMldL+PzWnV9lChoBmgJaA9DCIkJavgWE2BAlIaUUpRoFU3oA2gWR0CcyWzbvgFYdX2UKGgGaAloD0MIOPjCZKpFZ0CUhpRSlGgVTegDaBZHQJzMiT9sJpp1fZQoaAZoCWgPQwhevB+3X/xgQJSGlFKUaBVN6ANoFkdAnNFjwUg0THV9lChoBmgJaA9DCMRfkzVqHmVAlIaUUpRoFU3oA2gWR0Cc0doDPnjidX2UKGgGaAloD0MIkh/xK9btWUCUhpRSlGgVTegDaBZHQJzSRAdGRV91fZQoaAZoCWgPQwgr+G2I8ZNgQJSGlFKUaBVN6ANoFkdAnNatrKvFFXV9lChoBmgJaA9DCK1OzlDc0nBAlIaUUpRoFU2CAmgWR0Cc2lcPe54GdX2UKGgGaAloD0MIIlM+BFXYY0CUhpRSlGgVTegDaBZHQJzfsRdyDI11fZQoaAZoCWgPQwhEbLBwkultQJSGlFKUaBVNtwFoFkdAnOORfBvaUXV9lChoBmgJaA9DCASvljszBWNAlIaUUpRoFU3oA2gWR0Cc6iKKpDNRdX2UKGgGaAloD0MImIdM+RDEYUCUhpRSlGgVTegDaBZHQJzq/0lJHy51fZQoaAZoCWgPQwh0toDQ+jJnQJSGlFKUaBVN6ANoFkdAnQ177Gecx3V9lChoBmgJaA9DCOnTKvoDJnBAlIaUUpRoFU2gAWgWR0CdDcFirksCdX2UKGgGaAloD0MIpOGUuXl4bUCUhpRSlGgVTd0DaBZHQJ0OFpblijN1fZQoaAZoCWgPQwi+wRcmU8VkQJSGlFKUaBVN6ANoFkdAnQ7QdsBQvnV9lChoBmgJaA9DCGMraFpicW1AlIaUUpRoFU2dAmgWR0CdE/uQZGaydX2UKGgGaAloD0MIZAPpYtNtXECUhpRSlGgVTegDaBZHQJ0VlKh+OOt1fZQoaAZoCWgPQwijHTf8buVhQJSGlFKUaBVN6ANoFkdAnRhP2Xb/O3V9lChoBmgJaA9DCJ5EhH8RKGNAlIaUUpRoFU3oA2gWR0CdGUzNUwSKdX2UKGgGaAloD0MIdF34wXl+YECUhpRSlGgVTegDaBZHQJ0cTk8zQ/p1fZQoaAZoCWgPQwirIXGPpQhfQJSGlFKUaBVN6ANoFkdAnSDvnOjZc3V9lChoBmgJaA9DCIdOz7uxqFpAlIaUUpRoFU3oA2gWR0CdIWWPtD2KdX2UKGgGaAloD0MIcT0K16OuXUCUhpRSlGgVTegDaBZHQJ0hyOjqOcV1fZQoaAZoCWgPQwht409UNgdwQJSGlFKUaBVNiwJoFkdAnSNXV5KODXV9lChoBmgJaA9DCJ7PgHrzGXBAlIaUUpRoFU2JAWgWR0CdI8OW0JF9dX2UKGgGaAloD0MILzArFGn+ZUCUhpRSlGgVTegDaBZHQJ0pKwNb1RN1fZQoaAZoCWgPQwhenWNA9hReQJSGlFKUaBVN6ANoFkdAnTHFBD5TInV9lChoBmgJaA9DCBSUopV7TGxAlIaUUpRoFU3TAWgWR0CdMkT6SDAadX2UKGgGaAloD0MI5Nh6hjC8cUCUhpRSlGgVTc0DaBZHQJ0203kxREZ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.997,
81
+ "gae_lambda": 0.96,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
mk_ppo_lunar/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4fc12ac3d58b4207e107eace47bc79476b535c46a02ad93a5433d598fd46ff4
3
+ size 88057
mk_ppo_lunar/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ed02fdfab3c1b1c2da6750bbd6080c2f51fc923fa6a6eb4b205f2b84b67a0d6
3
+ size 43201
mk_ppo_lunar/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
mk_ppo_lunar/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (257 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 245.86760712943737, "std_reward": 25.04606971496818, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T16:06:37.334458"}