Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.75 +/- 0.72
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebba4d71b5b40c163a59d231c8b8625225d050b72cfb3d87a0d5c5ff9641021e
|
3 |
+
size 108009
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b83d05ca0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f8b83d063c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 400000,
|
45 |
+
"_total_timesteps": 400000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674492689154569929,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJ82PvywCJj7wtp8/PxSnvO2mvD+p5sU/ISzav5brmr+5Mbw/3EGUPus/Oz/RAJK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]]",
|
60 |
+
"desired_goal": "[[-1.1234483 0.16211766 1.2477703 ]\n [-0.0203954 1.4738442 1.5461017 ]\n [-1.7044717 -1.2103145 1.4702674 ]\n [ 0.28956497 0.73144406 -1.1406499 ]]",
|
61 |
+
"observation": "[[ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA46oVvq2pFb5/ml8+z0D/vVdx7T3GARw88n4rPa+zCz7tJ2M+zfjtPfS4Br5dwSg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.1461597 -0.14615507 0.2183628 ]\n [-0.12463533 0.11593883 0.00952191]\n [ 0.04186911 0.13642763 0.22183199]\n [ 0.11619721 -0.13156492 0.16480012]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/N8RFaqb9r+UhpRSlIwBbJRLMowBdJRHQI6WYoCuEEl1fZQoaAZoCWgPQwgpzlFHxxX4v5SGlFKUaBVLMmgWR0COlVz1bqyGdX2UKGgGaAloD0MIcjEG1nF8A8CUhpRSlGgVSzJoFkdAjpRl4keIVXV9lChoBmgJaA9DCESLbOf7iQTAlIaUUpRoFUsyaBZHQI6TePDHfdh1fZQoaAZoCWgPQwi7l/vkKOADwJSGlFKUaBVLMmgWR0COmmG5+YtydX2UKGgGaAloD0MIWW5pNSRu+b+UhpRSlGgVSzJoFkdAjplcfeUILXV9lChoBmgJaA9DCE2jycUYmP+/lIaUUpRoFUsyaBZHQI6YZsdkrgB1fZQoaAZoCWgPQwgHCryTT4/zv5SGlFKUaBVLMmgWR0COl3xy4nWrdX2UKGgGaAloD0MIsp3vp8ZrAMCUhpRSlGgVSzJoFkdAjp5MKb8WK3V9lChoBmgJaA9DCN8bQwBwLPW/lIaUUpRoFUsyaBZHQI6dRwZOzpp1fZQoaAZoCWgPQwhkrgyqDe4DwJSGlFKUaBVLMmgWR0COnFCiyprDdX2UKGgGaAloD0MI9MDHYMWp/b+UhpRSlGgVSzJoFkdAjptjXOGCZnV9lChoBmgJaA9DCHzRHi+kwwnAlIaUUpRoFUsyaBZHQI6ihRyfcvd1fZQoaAZoCWgPQwjey31yFGD/v5SGlFKUaBVLMmgWR0COoYK2rn1WdX2UKGgGaAloD0MI2bJ8XYb/9b+UhpRSlGgVSzJoFkdAjqCOfmLcbnV9lChoBmgJaA9DCE27mGa6l/2/lIaUUpRoFUsyaBZHQI6foZ88cMp1fZQoaAZoCWgPQwi6LvzgfCrwv5SGlFKUaBVLMmgWR0COpo5J9RaYdX2UKGgGaAloD0MI9iaG5GTiAMCUhpRSlGgVSzJoFkdAjqWLEk0JnnV9lChoBmgJaA9DCLAgzVg0Xfy/lIaUUpRoFUsyaBZHQI6klQ9A5aN1fZQoaAZoCWgPQwi8rfTabMwCwJSGlFKUaBVLMmgWR0COo6mqHXVcdX2UKGgGaAloD0MI9wFIbeKk87+UhpRSlGgVSzJoFkdAjqtsHKOktXV9lChoBmgJaA9DCGixFMlXIgLAlIaUUpRoFUsyaBZHQI6qaeXiR4h1fZQoaAZoCWgPQwjSxhFr8UkEwJSGlFKUaBVLMmgWR0COqXLjghr4dX2UKGgGaAloD0MIs0XSbvSRAsCUhpRSlGgVSzJoFkdAjqiFb/wRXnV9lChoBmgJaA9DCHgq4J7nzwHAlIaUUpRoFUsyaBZHQI6vgqEvkBF1fZQoaAZoCWgPQwiskV1pGWn+v5SGlFKUaBVLMmgWR0COrn3ai9IxdX2UKGgGaAloD0MItcU1PpN987+UhpRSlGgVSzJoFkdAjq2HDaXa8HV9lChoBmgJaA9DCA3C3O7l/vG/lIaUUpRoFUsyaBZHQI6smh7E5yV1fZQoaAZoCWgPQwhE+BdBYwYGwJSGlFKUaBVLMmgWR0COs8W1twaSdX2UKGgGaAloD0MINzXQfM7d9L+UhpRSlGgVSzJoFkdAjrLApSaVlnV9lChoBmgJaA9DCDm4dMx55gbAlIaUUpRoFUsyaBZHQI6xyauwHJN1fZQoaAZoCWgPQwjSxDvAk5bwv5SGlFKUaBVLMmgWR0COsN0Yj0L/dX2UKGgGaAloD0MIpkOn5904CcCUhpRSlGgVSzJoFkdAjrfHvMKTjnV9lChoBmgJaA9DCJ0std5vdPe/lIaUUpRoFUsyaBZHQI62wmgJ1JV1fZQoaAZoCWgPQwjCE3r9SXz9v5SGlFKUaBVLMmgWR0COtcuEEkjYdX2UKGgGaAloD0MIGhpPBHE+AcCUhpRSlGgVSzJoFkdAjrTetSydF3V9lChoBmgJaA9DCPNaCd0lsQvAlIaUUpRoFUsyaBZHQI68EfA9FF51fZQoaAZoCWgPQwgDQYAMHTvxv5SGlFKUaBVLMmgWR0COuwxbB42TdX2UKGgGaAloD0MIrhHBOLi0+b+UhpRSlGgVSzJoFkdAjroVLJ0W/XV9lChoBmgJaA9DCN6q61BNif+/lIaUUpRoFUsyaBZHQI65KJ/G2kV1fZQoaAZoCWgPQwh8KNGSx5P3v5SGlFKUaBVLMmgWR0COwF1EmY0EdX2UKGgGaAloD0MIKlQ3F3+7BcCUhpRSlGgVSzJoFkdAjr9X2EkB0nV9lChoBmgJaA9DCJPfopOl1vi/lIaUUpRoFUsyaBZHQI6+YYBNmDl1fZQoaAZoCWgPQwjdek0PCor2v5SGlFKUaBVLMmgWR0COvXPznRsudX2UKGgGaAloD0MICf8iaMwk8b+UhpRSlGgVSzJoFkdAjsSgvL5h0HV9lChoBmgJaA9DCIj029eBs/i/lIaUUpRoFUsyaBZHQI7DnG6wt8N1fZQoaAZoCWgPQwjpf7kWLYD9v5SGlFKUaBVLMmgWR0COwqX+ERJ3dX2UKGgGaAloD0MI7BaBsb6BCsCUhpRSlGgVSzJoFkdAjsG5F5OafHV9lChoBmgJaA9DCBL4w89/jwLAlIaUUpRoFUsyaBZHQI7Iy6BiCrd1fZQoaAZoCWgPQwgeU3dlF8z/v5SGlFKUaBVLMmgWR0COx8YAKfFrdX2UKGgGaAloD0MILsbAOo5f+L+UhpRSlGgVSzJoFkdAjsbPsRg7YHV9lChoBmgJaA9DCE61FmahHf+/lIaUUpRoFUsyaBZHQI7F4yM1jy51fZQoaAZoCWgPQwjFWRE10YcFwJSGlFKUaBVLMmgWR0COzRG1hLGrdX2UKGgGaAloD0MItfrqqkCt9r+UhpRSlGgVSzJoFkdAjswN7BwdbXV9lChoBmgJaA9DCLzplh3iH/q/lIaUUpRoFUsyaBZHQI7LF2mpEQZ1fZQoaAZoCWgPQwi+E7NeDKXyv5SGlFKUaBVLMmgWR0COyirBj4HpdX2UKGgGaAloD0MIBkZe1sSC7b+UhpRSlGgVSzJoFkdAjtFe7UXpGHV9lChoBmgJaA9DCHVat0HtN/q/lIaUUpRoFUsyaBZHQI7QWShakh11fZQoaAZoCWgPQwjJ5xVPPRIAwJSGlFKUaBVLMmgWR0COz2F/QSi/dX2UKGgGaAloD0MIfqg0Ymbf87+UhpRSlGgVSzJoFkdAjs5z4L1EmnV9lChoBmgJaA9DCIeJBil4iva/lIaUUpRoFUsyaBZHQI7ViU9pyp91fZQoaAZoCWgPQwg429yYnvD3v5SGlFKUaBVLMmgWR0CO1IOtnwocdX2UKGgGaAloD0MIz0wwnGt4AcCUhpRSlGgVSzJoFkdAjtOL3Cbc5HV9lChoBmgJaA9DCHfbheY6bQHAlIaUUpRoFUsyaBZHQI7SnumaYu11fZQoaAZoCWgPQwg4FD5bB4frv5SGlFKUaBVLMmgWR0CO2aEh7mdRdX2UKGgGaAloD0MIU82spYA09r+UhpRSlGgVSzJoFkdAjticzZYgaHV9lChoBmgJaA9DCPYJoBhZEgbAlIaUUpRoFUsyaBZHQI7Xp4D9wWF1fZQoaAZoCWgPQwhGYRdFD1wAwJSGlFKUaBVLMmgWR0CO1rqhUR4AdX2UKGgGaAloD0MICp5CrtRzBMCUhpRSlGgVSzJoFkdAjt3Z9d/rjnV9lChoBmgJaA9DCEONQpJZ/fu/lIaUUpRoFUsyaBZHQI7c1TrE9+x1fZQoaAZoCWgPQwjUf9b8+AsBwJSGlFKUaBVLMmgWR0CO2947ihnKdX2UKGgGaAloD0MIRQ2mYfjI/r+UhpRSlGgVSzJoFkdAjtryLZSNwXV9lChoBmgJaA9DCM9OBkfJiwLAlIaUUpRoFUsyaBZHQI7iAQDmr811fZQoaAZoCWgPQwjt1FxuMBT9v5SGlFKUaBVLMmgWR0CO4PuxbB42dX2UKGgGaAloD0MIQNr/AGtVBcCUhpRSlGgVSzJoFkdAjuAGLDQ7cXV9lChoBmgJaA9DCH3KMVncfwPAlIaUUpRoFUsyaBZHQI7fGdTYNAl1fZQoaAZoCWgPQwjGppVCIDcCwJSGlFKUaBVLMmgWR0CO5fISUTtcdX2UKGgGaAloD0MIUWnEzD4P9L+UhpRSlGgVSzJoFkdAjuTsJY1YQ3V9lChoBmgJaA9DCM9OBkfJiwXAlIaUUpRoFUsyaBZHQI7j9S619fF1fZQoaAZoCWgPQwiG4/kMqNcFwJSGlFKUaBVLMmgWR0CO4wgGr0aqdX2UKGgGaAloD0MI33AfuTVp77+UhpRSlGgVSzJoFkdAjun0RWcSXnV9lChoBmgJaA9DCKgd/pqsMQPAlIaUUpRoFUsyaBZHQI7o7/p+tr91fZQoaAZoCWgPQwhQ+62dKCkBwJSGlFKUaBVLMmgWR0CO5/pblijMdX2UKGgGaAloD0MIV3cstknF87+UhpRSlGgVSzJoFkdAjucMs6JZXHV9lChoBmgJaA9DCPYNTG4UWfi/lIaUUpRoFUsyaBZHQI7uWAqd6LR1fZQoaAZoCWgPQwi6EoHqHyQCwJSGlFKUaBVLMmgWR0CO7VL6DXe4dX2UKGgGaAloD0MIYHglyXO98L+UhpRSlGgVSzJoFkdAjuxdFvybx3V9lChoBmgJaA9DCPuWOV0WE++/lIaUUpRoFUsyaBZHQI7rb8R+SbJ1fZQoaAZoCWgPQwiZ2ecxynMDwJSGlFKUaBVLMmgWR0CO8qP+4smOdX2UKGgGaAloD0MIbMuAs5Qs+7+UhpRSlGgVSzJoFkdAjvGfSH/LknV9lChoBmgJaA9DCB0c7E0MyQnAlIaUUpRoFUsyaBZHQI7wqLQ5WBB1fZQoaAZoCWgPQwih2Aqallj8v5SGlFKUaBVLMmgWR0CO77qXWvr4dX2UKGgGaAloD0MIgosVNZiG/b+UhpRSlGgVSzJoFkdAjvcQ8fV7QnV9lChoBmgJaA9DCCi37XvUX++/lIaUUpRoFUsyaBZHQI72DDn/1g91fZQoaAZoCWgPQwiSW5NuS2Tvv5SGlFKUaBVLMmgWR0CO9RXz19ORdX2UKGgGaAloD0MIC+9yEd8J7L+UhpRSlGgVSzJoFkdAjvQomgJ1JXV9lChoBmgJaA9DCMnJxK2C+APAlIaUUpRoFUsyaBZHQI77wvcrRSh1fZQoaAZoCWgPQwgnaJPDJ537v5SGlFKUaBVLMmgWR0CO+r3yqdYodX2UKGgGaAloD0MILsvXZfhP+7+UhpRSlGgVSzJoFkdAjvnIfSx7iXV9lChoBmgJaA9DCK4QVmMJK/C/lIaUUpRoFUsyaBZHQI743FzdUKl1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 20000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38935296129880e7c69297fe59042a5aaa248c53581936dc2947ff2c2ab73053
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d10d02eab4a198e541e244131272f89e8e5bd0e39178b1d3d0257d50d88f20f7
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b83d05ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8b83d063c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 400000, "_total_timesteps": 400000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674492689154569929, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJ82PvywCJj7wtp8/PxSnvO2mvD+p5sU/ISzav5brmr+5Mbw/3EGUPus/Oz/RAJK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]]", "desired_goal": "[[-1.1234483 0.16211766 1.2477703 ]\n [-0.0203954 1.4738442 1.5461017 ]\n [-1.7044717 -1.2103145 1.4702674 ]\n [ 0.28956497 0.73144406 -1.1406499 ]]", "observation": "[[ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA46oVvq2pFb5/ml8+z0D/vVdx7T3GARw88n4rPa+zCz7tJ2M+zfjtPfS4Br5dwSg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1461597 -0.14615507 0.2183628 ]\n [-0.12463533 0.11593883 0.00952191]\n [ 0.04186911 0.13642763 0.22183199]\n [ 0.11619721 -0.13156492 0.16480012]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/N8RFaqb9r+UhpRSlIwBbJRLMowBdJRHQI6WYoCuEEl1fZQoaAZoCWgPQwgpzlFHxxX4v5SGlFKUaBVLMmgWR0COlVz1bqyGdX2UKGgGaAloD0MIcjEG1nF8A8CUhpRSlGgVSzJoFkdAjpRl4keIVXV9lChoBmgJaA9DCESLbOf7iQTAlIaUUpRoFUsyaBZHQI6TePDHfdh1fZQoaAZoCWgPQwi7l/vkKOADwJSGlFKUaBVLMmgWR0COmmG5+YtydX2UKGgGaAloD0MIWW5pNSRu+b+UhpRSlGgVSzJoFkdAjplcfeUILXV9lChoBmgJaA9DCE2jycUYmP+/lIaUUpRoFUsyaBZHQI6YZsdkrgB1fZQoaAZoCWgPQwgHCryTT4/zv5SGlFKUaBVLMmgWR0COl3xy4nWrdX2UKGgGaAloD0MIsp3vp8ZrAMCUhpRSlGgVSzJoFkdAjp5MKb8WK3V9lChoBmgJaA9DCN8bQwBwLPW/lIaUUpRoFUsyaBZHQI6dRwZOzpp1fZQoaAZoCWgPQwhkrgyqDe4DwJSGlFKUaBVLMmgWR0COnFCiyprDdX2UKGgGaAloD0MI9MDHYMWp/b+UhpRSlGgVSzJoFkdAjptjXOGCZnV9lChoBmgJaA9DCHzRHi+kwwnAlIaUUpRoFUsyaBZHQI6ihRyfcvd1fZQoaAZoCWgPQwjey31yFGD/v5SGlFKUaBVLMmgWR0COoYK2rn1WdX2UKGgGaAloD0MI2bJ8XYb/9b+UhpRSlGgVSzJoFkdAjqCOfmLcbnV9lChoBmgJaA9DCE27mGa6l/2/lIaUUpRoFUsyaBZHQI6foZ88cMp1fZQoaAZoCWgPQwi6LvzgfCrwv5SGlFKUaBVLMmgWR0COpo5J9RaYdX2UKGgGaAloD0MI9iaG5GTiAMCUhpRSlGgVSzJoFkdAjqWLEk0JnnV9lChoBmgJaA9DCLAgzVg0Xfy/lIaUUpRoFUsyaBZHQI6klQ9A5aN1fZQoaAZoCWgPQwi8rfTabMwCwJSGlFKUaBVLMmgWR0COo6mqHXVcdX2UKGgGaAloD0MI9wFIbeKk87+UhpRSlGgVSzJoFkdAjqtsHKOktXV9lChoBmgJaA9DCGixFMlXIgLAlIaUUpRoFUsyaBZHQI6qaeXiR4h1fZQoaAZoCWgPQwjSxhFr8UkEwJSGlFKUaBVLMmgWR0COqXLjghr4dX2UKGgGaAloD0MIs0XSbvSRAsCUhpRSlGgVSzJoFkdAjqiFb/wRXnV9lChoBmgJaA9DCHgq4J7nzwHAlIaUUpRoFUsyaBZHQI6vgqEvkBF1fZQoaAZoCWgPQwiskV1pGWn+v5SGlFKUaBVLMmgWR0COrn3ai9IxdX2UKGgGaAloD0MItcU1PpN987+UhpRSlGgVSzJoFkdAjq2HDaXa8HV9lChoBmgJaA9DCA3C3O7l/vG/lIaUUpRoFUsyaBZHQI6smh7E5yV1fZQoaAZoCWgPQwhE+BdBYwYGwJSGlFKUaBVLMmgWR0COs8W1twaSdX2UKGgGaAloD0MINzXQfM7d9L+UhpRSlGgVSzJoFkdAjrLApSaVlnV9lChoBmgJaA9DCDm4dMx55gbAlIaUUpRoFUsyaBZHQI6xyauwHJN1fZQoaAZoCWgPQwjSxDvAk5bwv5SGlFKUaBVLMmgWR0COsN0Yj0L/dX2UKGgGaAloD0MIpkOn5904CcCUhpRSlGgVSzJoFkdAjrfHvMKTjnV9lChoBmgJaA9DCJ0std5vdPe/lIaUUpRoFUsyaBZHQI62wmgJ1JV1fZQoaAZoCWgPQwjCE3r9SXz9v5SGlFKUaBVLMmgWR0COtcuEEkjYdX2UKGgGaAloD0MIGhpPBHE+AcCUhpRSlGgVSzJoFkdAjrTetSydF3V9lChoBmgJaA9DCPNaCd0lsQvAlIaUUpRoFUsyaBZHQI68EfA9FF51fZQoaAZoCWgPQwgDQYAMHTvxv5SGlFKUaBVLMmgWR0COuwxbB42TdX2UKGgGaAloD0MIrhHBOLi0+b+UhpRSlGgVSzJoFkdAjroVLJ0W/XV9lChoBmgJaA9DCN6q61BNif+/lIaUUpRoFUsyaBZHQI65KJ/G2kV1fZQoaAZoCWgPQwh8KNGSx5P3v5SGlFKUaBVLMmgWR0COwF1EmY0EdX2UKGgGaAloD0MIKlQ3F3+7BcCUhpRSlGgVSzJoFkdAjr9X2EkB0nV9lChoBmgJaA9DCJPfopOl1vi/lIaUUpRoFUsyaBZHQI6+YYBNmDl1fZQoaAZoCWgPQwjdek0PCor2v5SGlFKUaBVLMmgWR0COvXPznRsudX2UKGgGaAloD0MICf8iaMwk8b+UhpRSlGgVSzJoFkdAjsSgvL5h0HV9lChoBmgJaA9DCIj029eBs/i/lIaUUpRoFUsyaBZHQI7DnG6wt8N1fZQoaAZoCWgPQwjpf7kWLYD9v5SGlFKUaBVLMmgWR0COwqX+ERJ3dX2UKGgGaAloD0MI7BaBsb6BCsCUhpRSlGgVSzJoFkdAjsG5F5OafHV9lChoBmgJaA9DCBL4w89/jwLAlIaUUpRoFUsyaBZHQI7Iy6BiCrd1fZQoaAZoCWgPQwgeU3dlF8z/v5SGlFKUaBVLMmgWR0COx8YAKfFrdX2UKGgGaAloD0MILsbAOo5f+L+UhpRSlGgVSzJoFkdAjsbPsRg7YHV9lChoBmgJaA9DCE61FmahHf+/lIaUUpRoFUsyaBZHQI7F4yM1jy51fZQoaAZoCWgPQwjFWRE10YcFwJSGlFKUaBVLMmgWR0COzRG1hLGrdX2UKGgGaAloD0MItfrqqkCt9r+UhpRSlGgVSzJoFkdAjswN7BwdbXV9lChoBmgJaA9DCLzplh3iH/q/lIaUUpRoFUsyaBZHQI7LF2mpEQZ1fZQoaAZoCWgPQwi+E7NeDKXyv5SGlFKUaBVLMmgWR0COyirBj4HpdX2UKGgGaAloD0MIBkZe1sSC7b+UhpRSlGgVSzJoFkdAjtFe7UXpGHV9lChoBmgJaA9DCHVat0HtN/q/lIaUUpRoFUsyaBZHQI7QWShakh11fZQoaAZoCWgPQwjJ5xVPPRIAwJSGlFKUaBVLMmgWR0COz2F/QSi/dX2UKGgGaAloD0MIfqg0Ymbf87+UhpRSlGgVSzJoFkdAjs5z4L1EmnV9lChoBmgJaA9DCIeJBil4iva/lIaUUpRoFUsyaBZHQI7ViU9pyp91fZQoaAZoCWgPQwg429yYnvD3v5SGlFKUaBVLMmgWR0CO1IOtnwocdX2UKGgGaAloD0MIz0wwnGt4AcCUhpRSlGgVSzJoFkdAjtOL3Cbc5HV9lChoBmgJaA9DCHfbheY6bQHAlIaUUpRoFUsyaBZHQI7SnumaYu11fZQoaAZoCWgPQwg4FD5bB4frv5SGlFKUaBVLMmgWR0CO2aEh7mdRdX2UKGgGaAloD0MIU82spYA09r+UhpRSlGgVSzJoFkdAjticzZYgaHV9lChoBmgJaA9DCPYJoBhZEgbAlIaUUpRoFUsyaBZHQI7Xp4D9wWF1fZQoaAZoCWgPQwhGYRdFD1wAwJSGlFKUaBVLMmgWR0CO1rqhUR4AdX2UKGgGaAloD0MICp5CrtRzBMCUhpRSlGgVSzJoFkdAjt3Z9d/rjnV9lChoBmgJaA9DCEONQpJZ/fu/lIaUUpRoFUsyaBZHQI7c1TrE9+x1fZQoaAZoCWgPQwjUf9b8+AsBwJSGlFKUaBVLMmgWR0CO2947ihnKdX2UKGgGaAloD0MIRQ2mYfjI/r+UhpRSlGgVSzJoFkdAjtryLZSNwXV9lChoBmgJaA9DCM9OBkfJiwLAlIaUUpRoFUsyaBZHQI7iAQDmr811fZQoaAZoCWgPQwjt1FxuMBT9v5SGlFKUaBVLMmgWR0CO4PuxbB42dX2UKGgGaAloD0MIQNr/AGtVBcCUhpRSlGgVSzJoFkdAjuAGLDQ7cXV9lChoBmgJaA9DCH3KMVncfwPAlIaUUpRoFUsyaBZHQI7fGdTYNAl1fZQoaAZoCWgPQwjGppVCIDcCwJSGlFKUaBVLMmgWR0CO5fISUTtcdX2UKGgGaAloD0MIUWnEzD4P9L+UhpRSlGgVSzJoFkdAjuTsJY1YQ3V9lChoBmgJaA9DCM9OBkfJiwXAlIaUUpRoFUsyaBZHQI7j9S619fF1fZQoaAZoCWgPQwiG4/kMqNcFwJSGlFKUaBVLMmgWR0CO4wgGr0aqdX2UKGgGaAloD0MI33AfuTVp77+UhpRSlGgVSzJoFkdAjun0RWcSXnV9lChoBmgJaA9DCKgd/pqsMQPAlIaUUpRoFUsyaBZHQI7o7/p+tr91fZQoaAZoCWgPQwhQ+62dKCkBwJSGlFKUaBVLMmgWR0CO5/pblijMdX2UKGgGaAloD0MIV3cstknF87+UhpRSlGgVSzJoFkdAjucMs6JZXHV9lChoBmgJaA9DCPYNTG4UWfi/lIaUUpRoFUsyaBZHQI7uWAqd6LR1fZQoaAZoCWgPQwi6EoHqHyQCwJSGlFKUaBVLMmgWR0CO7VL6DXe4dX2UKGgGaAloD0MIYHglyXO98L+UhpRSlGgVSzJoFkdAjuxdFvybx3V9lChoBmgJaA9DCPuWOV0WE++/lIaUUpRoFUsyaBZHQI7rb8R+SbJ1fZQoaAZoCWgPQwiZ2ecxynMDwJSGlFKUaBVLMmgWR0CO8qP+4smOdX2UKGgGaAloD0MIbMuAs5Qs+7+UhpRSlGgVSzJoFkdAjvGfSH/LknV9lChoBmgJaA9DCB0c7E0MyQnAlIaUUpRoFUsyaBZHQI7wqLQ5WBB1fZQoaAZoCWgPQwih2Aqallj8v5SGlFKUaBVLMmgWR0CO77qXWvr4dX2UKGgGaAloD0MIgosVNZiG/b+UhpRSlGgVSzJoFkdAjvcQ8fV7QnV9lChoBmgJaA9DCCi37XvUX++/lIaUUpRoFUsyaBZHQI72DDn/1g91fZQoaAZoCWgPQwiSW5NuS2Tvv5SGlFKUaBVLMmgWR0CO9RXz19ORdX2UKGgGaAloD0MIC+9yEd8J7L+UhpRSlGgVSzJoFkdAjvQomgJ1JXV9lChoBmgJaA9DCMnJxK2C+APAlIaUUpRoFUsyaBZHQI77wvcrRSh1fZQoaAZoCWgPQwgnaJPDJ537v5SGlFKUaBVLMmgWR0CO+r3yqdYodX2UKGgGaAloD0MILsvXZfhP+7+UhpRSlGgVSzJoFkdAjvnIfSx7iXV9lChoBmgJaA9DCK4QVmMJK/C/lIaUUpRoFUsyaBZHQI743FzdUKl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (478 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.7545760365668683, "std_reward": 0.7187153198574233, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T17:42:04.120393"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa4612150307ad68b1d379d12a1fa11e97dabd7b129422bbc770ce22db23a34d
|
3 |
+
size 3056
|