mkahari commited on
Commit
04d0c1b
1 Parent(s): 3eb0c85

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.75 +/- 0.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebba4d71b5b40c163a59d231c8b8625225d050b72cfb3d87a0d5c5ff9641021e
3
+ size 108009
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b83d05ca0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f8b83d063c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 400000,
45
+ "_total_timesteps": 400000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674492689154569929,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJ82PvywCJj7wtp8/PxSnvO2mvD+p5sU/ISzav5brmr+5Mbw/3EGUPus/Oz/RAJK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]]",
60
+ "desired_goal": "[[-1.1234483 0.16211766 1.2477703 ]\n [-0.0203954 1.4738442 1.5461017 ]\n [-1.7044717 -1.2103145 1.4702674 ]\n [ 0.28956497 0.73144406 -1.1406499 ]]",
61
+ "observation": "[[ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA46oVvq2pFb5/ml8+z0D/vVdx7T3GARw88n4rPa+zCz7tJ2M+zfjtPfS4Br5dwSg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.1461597 -0.14615507 0.2183628 ]\n [-0.12463533 0.11593883 0.00952191]\n [ 0.04186911 0.13642763 0.22183199]\n [ 0.11619721 -0.13156492 0.16480012]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/N8RFaqb9r+UhpRSlIwBbJRLMowBdJRHQI6WYoCuEEl1fZQoaAZoCWgPQwgpzlFHxxX4v5SGlFKUaBVLMmgWR0COlVz1bqyGdX2UKGgGaAloD0MIcjEG1nF8A8CUhpRSlGgVSzJoFkdAjpRl4keIVXV9lChoBmgJaA9DCESLbOf7iQTAlIaUUpRoFUsyaBZHQI6TePDHfdh1fZQoaAZoCWgPQwi7l/vkKOADwJSGlFKUaBVLMmgWR0COmmG5+YtydX2UKGgGaAloD0MIWW5pNSRu+b+UhpRSlGgVSzJoFkdAjplcfeUILXV9lChoBmgJaA9DCE2jycUYmP+/lIaUUpRoFUsyaBZHQI6YZsdkrgB1fZQoaAZoCWgPQwgHCryTT4/zv5SGlFKUaBVLMmgWR0COl3xy4nWrdX2UKGgGaAloD0MIsp3vp8ZrAMCUhpRSlGgVSzJoFkdAjp5MKb8WK3V9lChoBmgJaA9DCN8bQwBwLPW/lIaUUpRoFUsyaBZHQI6dRwZOzpp1fZQoaAZoCWgPQwhkrgyqDe4DwJSGlFKUaBVLMmgWR0COnFCiyprDdX2UKGgGaAloD0MI9MDHYMWp/b+UhpRSlGgVSzJoFkdAjptjXOGCZnV9lChoBmgJaA9DCHzRHi+kwwnAlIaUUpRoFUsyaBZHQI6ihRyfcvd1fZQoaAZoCWgPQwjey31yFGD/v5SGlFKUaBVLMmgWR0COoYK2rn1WdX2UKGgGaAloD0MI2bJ8XYb/9b+UhpRSlGgVSzJoFkdAjqCOfmLcbnV9lChoBmgJaA9DCE27mGa6l/2/lIaUUpRoFUsyaBZHQI6foZ88cMp1fZQoaAZoCWgPQwi6LvzgfCrwv5SGlFKUaBVLMmgWR0COpo5J9RaYdX2UKGgGaAloD0MI9iaG5GTiAMCUhpRSlGgVSzJoFkdAjqWLEk0JnnV9lChoBmgJaA9DCLAgzVg0Xfy/lIaUUpRoFUsyaBZHQI6klQ9A5aN1fZQoaAZoCWgPQwi8rfTabMwCwJSGlFKUaBVLMmgWR0COo6mqHXVcdX2UKGgGaAloD0MI9wFIbeKk87+UhpRSlGgVSzJoFkdAjqtsHKOktXV9lChoBmgJaA9DCGixFMlXIgLAlIaUUpRoFUsyaBZHQI6qaeXiR4h1fZQoaAZoCWgPQwjSxhFr8UkEwJSGlFKUaBVLMmgWR0COqXLjghr4dX2UKGgGaAloD0MIs0XSbvSRAsCUhpRSlGgVSzJoFkdAjqiFb/wRXnV9lChoBmgJaA9DCHgq4J7nzwHAlIaUUpRoFUsyaBZHQI6vgqEvkBF1fZQoaAZoCWgPQwiskV1pGWn+v5SGlFKUaBVLMmgWR0COrn3ai9IxdX2UKGgGaAloD0MItcU1PpN987+UhpRSlGgVSzJoFkdAjq2HDaXa8HV9lChoBmgJaA9DCA3C3O7l/vG/lIaUUpRoFUsyaBZHQI6smh7E5yV1fZQoaAZoCWgPQwhE+BdBYwYGwJSGlFKUaBVLMmgWR0COs8W1twaSdX2UKGgGaAloD0MINzXQfM7d9L+UhpRSlGgVSzJoFkdAjrLApSaVlnV9lChoBmgJaA9DCDm4dMx55gbAlIaUUpRoFUsyaBZHQI6xyauwHJN1fZQoaAZoCWgPQwjSxDvAk5bwv5SGlFKUaBVLMmgWR0COsN0Yj0L/dX2UKGgGaAloD0MIpkOn5904CcCUhpRSlGgVSzJoFkdAjrfHvMKTjnV9lChoBmgJaA9DCJ0std5vdPe/lIaUUpRoFUsyaBZHQI62wmgJ1JV1fZQoaAZoCWgPQwjCE3r9SXz9v5SGlFKUaBVLMmgWR0COtcuEEkjYdX2UKGgGaAloD0MIGhpPBHE+AcCUhpRSlGgVSzJoFkdAjrTetSydF3V9lChoBmgJaA9DCPNaCd0lsQvAlIaUUpRoFUsyaBZHQI68EfA9FF51fZQoaAZoCWgPQwgDQYAMHTvxv5SGlFKUaBVLMmgWR0COuwxbB42TdX2UKGgGaAloD0MIrhHBOLi0+b+UhpRSlGgVSzJoFkdAjroVLJ0W/XV9lChoBmgJaA9DCN6q61BNif+/lIaUUpRoFUsyaBZHQI65KJ/G2kV1fZQoaAZoCWgPQwh8KNGSx5P3v5SGlFKUaBVLMmgWR0COwF1EmY0EdX2UKGgGaAloD0MIKlQ3F3+7BcCUhpRSlGgVSzJoFkdAjr9X2EkB0nV9lChoBmgJaA9DCJPfopOl1vi/lIaUUpRoFUsyaBZHQI6+YYBNmDl1fZQoaAZoCWgPQwjdek0PCor2v5SGlFKUaBVLMmgWR0COvXPznRsudX2UKGgGaAloD0MICf8iaMwk8b+UhpRSlGgVSzJoFkdAjsSgvL5h0HV9lChoBmgJaA9DCIj029eBs/i/lIaUUpRoFUsyaBZHQI7DnG6wt8N1fZQoaAZoCWgPQwjpf7kWLYD9v5SGlFKUaBVLMmgWR0COwqX+ERJ3dX2UKGgGaAloD0MI7BaBsb6BCsCUhpRSlGgVSzJoFkdAjsG5F5OafHV9lChoBmgJaA9DCBL4w89/jwLAlIaUUpRoFUsyaBZHQI7Iy6BiCrd1fZQoaAZoCWgPQwgeU3dlF8z/v5SGlFKUaBVLMmgWR0COx8YAKfFrdX2UKGgGaAloD0MILsbAOo5f+L+UhpRSlGgVSzJoFkdAjsbPsRg7YHV9lChoBmgJaA9DCE61FmahHf+/lIaUUpRoFUsyaBZHQI7F4yM1jy51fZQoaAZoCWgPQwjFWRE10YcFwJSGlFKUaBVLMmgWR0COzRG1hLGrdX2UKGgGaAloD0MItfrqqkCt9r+UhpRSlGgVSzJoFkdAjswN7BwdbXV9lChoBmgJaA9DCLzplh3iH/q/lIaUUpRoFUsyaBZHQI7LF2mpEQZ1fZQoaAZoCWgPQwi+E7NeDKXyv5SGlFKUaBVLMmgWR0COyirBj4HpdX2UKGgGaAloD0MIBkZe1sSC7b+UhpRSlGgVSzJoFkdAjtFe7UXpGHV9lChoBmgJaA9DCHVat0HtN/q/lIaUUpRoFUsyaBZHQI7QWShakh11fZQoaAZoCWgPQwjJ5xVPPRIAwJSGlFKUaBVLMmgWR0COz2F/QSi/dX2UKGgGaAloD0MIfqg0Ymbf87+UhpRSlGgVSzJoFkdAjs5z4L1EmnV9lChoBmgJaA9DCIeJBil4iva/lIaUUpRoFUsyaBZHQI7ViU9pyp91fZQoaAZoCWgPQwg429yYnvD3v5SGlFKUaBVLMmgWR0CO1IOtnwocdX2UKGgGaAloD0MIz0wwnGt4AcCUhpRSlGgVSzJoFkdAjtOL3Cbc5HV9lChoBmgJaA9DCHfbheY6bQHAlIaUUpRoFUsyaBZHQI7SnumaYu11fZQoaAZoCWgPQwg4FD5bB4frv5SGlFKUaBVLMmgWR0CO2aEh7mdRdX2UKGgGaAloD0MIU82spYA09r+UhpRSlGgVSzJoFkdAjticzZYgaHV9lChoBmgJaA9DCPYJoBhZEgbAlIaUUpRoFUsyaBZHQI7Xp4D9wWF1fZQoaAZoCWgPQwhGYRdFD1wAwJSGlFKUaBVLMmgWR0CO1rqhUR4AdX2UKGgGaAloD0MICp5CrtRzBMCUhpRSlGgVSzJoFkdAjt3Z9d/rjnV9lChoBmgJaA9DCEONQpJZ/fu/lIaUUpRoFUsyaBZHQI7c1TrE9+x1fZQoaAZoCWgPQwjUf9b8+AsBwJSGlFKUaBVLMmgWR0CO2947ihnKdX2UKGgGaAloD0MIRQ2mYfjI/r+UhpRSlGgVSzJoFkdAjtryLZSNwXV9lChoBmgJaA9DCM9OBkfJiwLAlIaUUpRoFUsyaBZHQI7iAQDmr811fZQoaAZoCWgPQwjt1FxuMBT9v5SGlFKUaBVLMmgWR0CO4PuxbB42dX2UKGgGaAloD0MIQNr/AGtVBcCUhpRSlGgVSzJoFkdAjuAGLDQ7cXV9lChoBmgJaA9DCH3KMVncfwPAlIaUUpRoFUsyaBZHQI7fGdTYNAl1fZQoaAZoCWgPQwjGppVCIDcCwJSGlFKUaBVLMmgWR0CO5fISUTtcdX2UKGgGaAloD0MIUWnEzD4P9L+UhpRSlGgVSzJoFkdAjuTsJY1YQ3V9lChoBmgJaA9DCM9OBkfJiwXAlIaUUpRoFUsyaBZHQI7j9S619fF1fZQoaAZoCWgPQwiG4/kMqNcFwJSGlFKUaBVLMmgWR0CO4wgGr0aqdX2UKGgGaAloD0MI33AfuTVp77+UhpRSlGgVSzJoFkdAjun0RWcSXnV9lChoBmgJaA9DCKgd/pqsMQPAlIaUUpRoFUsyaBZHQI7o7/p+tr91fZQoaAZoCWgPQwhQ+62dKCkBwJSGlFKUaBVLMmgWR0CO5/pblijMdX2UKGgGaAloD0MIV3cstknF87+UhpRSlGgVSzJoFkdAjucMs6JZXHV9lChoBmgJaA9DCPYNTG4UWfi/lIaUUpRoFUsyaBZHQI7uWAqd6LR1fZQoaAZoCWgPQwi6EoHqHyQCwJSGlFKUaBVLMmgWR0CO7VL6DXe4dX2UKGgGaAloD0MIYHglyXO98L+UhpRSlGgVSzJoFkdAjuxdFvybx3V9lChoBmgJaA9DCPuWOV0WE++/lIaUUpRoFUsyaBZHQI7rb8R+SbJ1fZQoaAZoCWgPQwiZ2ecxynMDwJSGlFKUaBVLMmgWR0CO8qP+4smOdX2UKGgGaAloD0MIbMuAs5Qs+7+UhpRSlGgVSzJoFkdAjvGfSH/LknV9lChoBmgJaA9DCB0c7E0MyQnAlIaUUpRoFUsyaBZHQI7wqLQ5WBB1fZQoaAZoCWgPQwih2Aqallj8v5SGlFKUaBVLMmgWR0CO77qXWvr4dX2UKGgGaAloD0MIgosVNZiG/b+UhpRSlGgVSzJoFkdAjvcQ8fV7QnV9lChoBmgJaA9DCCi37XvUX++/lIaUUpRoFUsyaBZHQI72DDn/1g91fZQoaAZoCWgPQwiSW5NuS2Tvv5SGlFKUaBVLMmgWR0CO9RXz19ORdX2UKGgGaAloD0MIC+9yEd8J7L+UhpRSlGgVSzJoFkdAjvQomgJ1JXV9lChoBmgJaA9DCMnJxK2C+APAlIaUUpRoFUsyaBZHQI77wvcrRSh1fZQoaAZoCWgPQwgnaJPDJ537v5SGlFKUaBVLMmgWR0CO+r3yqdYodX2UKGgGaAloD0MILsvXZfhP+7+UhpRSlGgVSzJoFkdAjvnIfSx7iXV9lChoBmgJaA9DCK4QVmMJK/C/lIaUUpRoFUsyaBZHQI743FzdUKl1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 20000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38935296129880e7c69297fe59042a5aaa248c53581936dc2947ff2c2ab73053
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d10d02eab4a198e541e244131272f89e8e5bd0e39178b1d3d0257d50d88f20f7
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b83d05ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8b83d063c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 400000, "_total_timesteps": 400000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674492689154569929, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/oCC8PtsoIDvjEhU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJ82PvywCJj7wtp8/PxSnvO2mvD+p5sU/ISzav5brmr+5Mbw/3EGUPus/Oz/RAJK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTugILw+2yggO+MSFT85jRO8SD8BO80vZTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]\n [0.3674364 0.00244384 0.58231944]]", "desired_goal": "[[-1.1234483 0.16211766 1.2477703 ]\n [-0.0203954 1.4738442 1.5461017 ]\n [-1.7044717 -1.2103145 1.4702674 ]\n [ 0.28956497 0.73144406 -1.1406499 ]]", "observation": "[[ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]\n [ 0.3674364 0.00244384 0.58231944 -0.00900584 0.00197216 0.00349711]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA46oVvq2pFb5/ml8+z0D/vVdx7T3GARw88n4rPa+zCz7tJ2M+zfjtPfS4Br5dwSg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1461597 -0.14615507 0.2183628 ]\n [-0.12463533 0.11593883 0.00952191]\n [ 0.04186911 0.13642763 0.22183199]\n [ 0.11619721 -0.13156492 0.16480012]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/N8RFaqb9r+UhpRSlIwBbJRLMowBdJRHQI6WYoCuEEl1fZQoaAZoCWgPQwgpzlFHxxX4v5SGlFKUaBVLMmgWR0COlVz1bqyGdX2UKGgGaAloD0MIcjEG1nF8A8CUhpRSlGgVSzJoFkdAjpRl4keIVXV9lChoBmgJaA9DCESLbOf7iQTAlIaUUpRoFUsyaBZHQI6TePDHfdh1fZQoaAZoCWgPQwi7l/vkKOADwJSGlFKUaBVLMmgWR0COmmG5+YtydX2UKGgGaAloD0MIWW5pNSRu+b+UhpRSlGgVSzJoFkdAjplcfeUILXV9lChoBmgJaA9DCE2jycUYmP+/lIaUUpRoFUsyaBZHQI6YZsdkrgB1fZQoaAZoCWgPQwgHCryTT4/zv5SGlFKUaBVLMmgWR0COl3xy4nWrdX2UKGgGaAloD0MIsp3vp8ZrAMCUhpRSlGgVSzJoFkdAjp5MKb8WK3V9lChoBmgJaA9DCN8bQwBwLPW/lIaUUpRoFUsyaBZHQI6dRwZOzpp1fZQoaAZoCWgPQwhkrgyqDe4DwJSGlFKUaBVLMmgWR0COnFCiyprDdX2UKGgGaAloD0MI9MDHYMWp/b+UhpRSlGgVSzJoFkdAjptjXOGCZnV9lChoBmgJaA9DCHzRHi+kwwnAlIaUUpRoFUsyaBZHQI6ihRyfcvd1fZQoaAZoCWgPQwjey31yFGD/v5SGlFKUaBVLMmgWR0COoYK2rn1WdX2UKGgGaAloD0MI2bJ8XYb/9b+UhpRSlGgVSzJoFkdAjqCOfmLcbnV9lChoBmgJaA9DCE27mGa6l/2/lIaUUpRoFUsyaBZHQI6foZ88cMp1fZQoaAZoCWgPQwi6LvzgfCrwv5SGlFKUaBVLMmgWR0COpo5J9RaYdX2UKGgGaAloD0MI9iaG5GTiAMCUhpRSlGgVSzJoFkdAjqWLEk0JnnV9lChoBmgJaA9DCLAgzVg0Xfy/lIaUUpRoFUsyaBZHQI6klQ9A5aN1fZQoaAZoCWgPQwi8rfTabMwCwJSGlFKUaBVLMmgWR0COo6mqHXVcdX2UKGgGaAloD0MI9wFIbeKk87+UhpRSlGgVSzJoFkdAjqtsHKOktXV9lChoBmgJaA9DCGixFMlXIgLAlIaUUpRoFUsyaBZHQI6qaeXiR4h1fZQoaAZoCWgPQwjSxhFr8UkEwJSGlFKUaBVLMmgWR0COqXLjghr4dX2UKGgGaAloD0MIs0XSbvSRAsCUhpRSlGgVSzJoFkdAjqiFb/wRXnV9lChoBmgJaA9DCHgq4J7nzwHAlIaUUpRoFUsyaBZHQI6vgqEvkBF1fZQoaAZoCWgPQwiskV1pGWn+v5SGlFKUaBVLMmgWR0COrn3ai9IxdX2UKGgGaAloD0MItcU1PpN987+UhpRSlGgVSzJoFkdAjq2HDaXa8HV9lChoBmgJaA9DCA3C3O7l/vG/lIaUUpRoFUsyaBZHQI6smh7E5yV1fZQoaAZoCWgPQwhE+BdBYwYGwJSGlFKUaBVLMmgWR0COs8W1twaSdX2UKGgGaAloD0MINzXQfM7d9L+UhpRSlGgVSzJoFkdAjrLApSaVlnV9lChoBmgJaA9DCDm4dMx55gbAlIaUUpRoFUsyaBZHQI6xyauwHJN1fZQoaAZoCWgPQwjSxDvAk5bwv5SGlFKUaBVLMmgWR0COsN0Yj0L/dX2UKGgGaAloD0MIpkOn5904CcCUhpRSlGgVSzJoFkdAjrfHvMKTjnV9lChoBmgJaA9DCJ0std5vdPe/lIaUUpRoFUsyaBZHQI62wmgJ1JV1fZQoaAZoCWgPQwjCE3r9SXz9v5SGlFKUaBVLMmgWR0COtcuEEkjYdX2UKGgGaAloD0MIGhpPBHE+AcCUhpRSlGgVSzJoFkdAjrTetSydF3V9lChoBmgJaA9DCPNaCd0lsQvAlIaUUpRoFUsyaBZHQI68EfA9FF51fZQoaAZoCWgPQwgDQYAMHTvxv5SGlFKUaBVLMmgWR0COuwxbB42TdX2UKGgGaAloD0MIrhHBOLi0+b+UhpRSlGgVSzJoFkdAjroVLJ0W/XV9lChoBmgJaA9DCN6q61BNif+/lIaUUpRoFUsyaBZHQI65KJ/G2kV1fZQoaAZoCWgPQwh8KNGSx5P3v5SGlFKUaBVLMmgWR0COwF1EmY0EdX2UKGgGaAloD0MIKlQ3F3+7BcCUhpRSlGgVSzJoFkdAjr9X2EkB0nV9lChoBmgJaA9DCJPfopOl1vi/lIaUUpRoFUsyaBZHQI6+YYBNmDl1fZQoaAZoCWgPQwjdek0PCor2v5SGlFKUaBVLMmgWR0COvXPznRsudX2UKGgGaAloD0MICf8iaMwk8b+UhpRSlGgVSzJoFkdAjsSgvL5h0HV9lChoBmgJaA9DCIj029eBs/i/lIaUUpRoFUsyaBZHQI7DnG6wt8N1fZQoaAZoCWgPQwjpf7kWLYD9v5SGlFKUaBVLMmgWR0COwqX+ERJ3dX2UKGgGaAloD0MI7BaBsb6BCsCUhpRSlGgVSzJoFkdAjsG5F5OafHV9lChoBmgJaA9DCBL4w89/jwLAlIaUUpRoFUsyaBZHQI7Iy6BiCrd1fZQoaAZoCWgPQwgeU3dlF8z/v5SGlFKUaBVLMmgWR0COx8YAKfFrdX2UKGgGaAloD0MILsbAOo5f+L+UhpRSlGgVSzJoFkdAjsbPsRg7YHV9lChoBmgJaA9DCE61FmahHf+/lIaUUpRoFUsyaBZHQI7F4yM1jy51fZQoaAZoCWgPQwjFWRE10YcFwJSGlFKUaBVLMmgWR0COzRG1hLGrdX2UKGgGaAloD0MItfrqqkCt9r+UhpRSlGgVSzJoFkdAjswN7BwdbXV9lChoBmgJaA9DCLzplh3iH/q/lIaUUpRoFUsyaBZHQI7LF2mpEQZ1fZQoaAZoCWgPQwi+E7NeDKXyv5SGlFKUaBVLMmgWR0COyirBj4HpdX2UKGgGaAloD0MIBkZe1sSC7b+UhpRSlGgVSzJoFkdAjtFe7UXpGHV9lChoBmgJaA9DCHVat0HtN/q/lIaUUpRoFUsyaBZHQI7QWShakh11fZQoaAZoCWgPQwjJ5xVPPRIAwJSGlFKUaBVLMmgWR0COz2F/QSi/dX2UKGgGaAloD0MIfqg0Ymbf87+UhpRSlGgVSzJoFkdAjs5z4L1EmnV9lChoBmgJaA9DCIeJBil4iva/lIaUUpRoFUsyaBZHQI7ViU9pyp91fZQoaAZoCWgPQwg429yYnvD3v5SGlFKUaBVLMmgWR0CO1IOtnwocdX2UKGgGaAloD0MIz0wwnGt4AcCUhpRSlGgVSzJoFkdAjtOL3Cbc5HV9lChoBmgJaA9DCHfbheY6bQHAlIaUUpRoFUsyaBZHQI7SnumaYu11fZQoaAZoCWgPQwg4FD5bB4frv5SGlFKUaBVLMmgWR0CO2aEh7mdRdX2UKGgGaAloD0MIU82spYA09r+UhpRSlGgVSzJoFkdAjticzZYgaHV9lChoBmgJaA9DCPYJoBhZEgbAlIaUUpRoFUsyaBZHQI7Xp4D9wWF1fZQoaAZoCWgPQwhGYRdFD1wAwJSGlFKUaBVLMmgWR0CO1rqhUR4AdX2UKGgGaAloD0MICp5CrtRzBMCUhpRSlGgVSzJoFkdAjt3Z9d/rjnV9lChoBmgJaA9DCEONQpJZ/fu/lIaUUpRoFUsyaBZHQI7c1TrE9+x1fZQoaAZoCWgPQwjUf9b8+AsBwJSGlFKUaBVLMmgWR0CO2947ihnKdX2UKGgGaAloD0MIRQ2mYfjI/r+UhpRSlGgVSzJoFkdAjtryLZSNwXV9lChoBmgJaA9DCM9OBkfJiwLAlIaUUpRoFUsyaBZHQI7iAQDmr811fZQoaAZoCWgPQwjt1FxuMBT9v5SGlFKUaBVLMmgWR0CO4PuxbB42dX2UKGgGaAloD0MIQNr/AGtVBcCUhpRSlGgVSzJoFkdAjuAGLDQ7cXV9lChoBmgJaA9DCH3KMVncfwPAlIaUUpRoFUsyaBZHQI7fGdTYNAl1fZQoaAZoCWgPQwjGppVCIDcCwJSGlFKUaBVLMmgWR0CO5fISUTtcdX2UKGgGaAloD0MIUWnEzD4P9L+UhpRSlGgVSzJoFkdAjuTsJY1YQ3V9lChoBmgJaA9DCM9OBkfJiwXAlIaUUpRoFUsyaBZHQI7j9S619fF1fZQoaAZoCWgPQwiG4/kMqNcFwJSGlFKUaBVLMmgWR0CO4wgGr0aqdX2UKGgGaAloD0MI33AfuTVp77+UhpRSlGgVSzJoFkdAjun0RWcSXnV9lChoBmgJaA9DCKgd/pqsMQPAlIaUUpRoFUsyaBZHQI7o7/p+tr91fZQoaAZoCWgPQwhQ+62dKCkBwJSGlFKUaBVLMmgWR0CO5/pblijMdX2UKGgGaAloD0MIV3cstknF87+UhpRSlGgVSzJoFkdAjucMs6JZXHV9lChoBmgJaA9DCPYNTG4UWfi/lIaUUpRoFUsyaBZHQI7uWAqd6LR1fZQoaAZoCWgPQwi6EoHqHyQCwJSGlFKUaBVLMmgWR0CO7VL6DXe4dX2UKGgGaAloD0MIYHglyXO98L+UhpRSlGgVSzJoFkdAjuxdFvybx3V9lChoBmgJaA9DCPuWOV0WE++/lIaUUpRoFUsyaBZHQI7rb8R+SbJ1fZQoaAZoCWgPQwiZ2ecxynMDwJSGlFKUaBVLMmgWR0CO8qP+4smOdX2UKGgGaAloD0MIbMuAs5Qs+7+UhpRSlGgVSzJoFkdAjvGfSH/LknV9lChoBmgJaA9DCB0c7E0MyQnAlIaUUpRoFUsyaBZHQI7wqLQ5WBB1fZQoaAZoCWgPQwih2Aqallj8v5SGlFKUaBVLMmgWR0CO77qXWvr4dX2UKGgGaAloD0MIgosVNZiG/b+UhpRSlGgVSzJoFkdAjvcQ8fV7QnV9lChoBmgJaA9DCCi37XvUX++/lIaUUpRoFUsyaBZHQI72DDn/1g91fZQoaAZoCWgPQwiSW5NuS2Tvv5SGlFKUaBVLMmgWR0CO9RXz19ORdX2UKGgGaAloD0MIC+9yEd8J7L+UhpRSlGgVSzJoFkdAjvQomgJ1JXV9lChoBmgJaA9DCMnJxK2C+APAlIaUUpRoFUsyaBZHQI77wvcrRSh1fZQoaAZoCWgPQwgnaJPDJ537v5SGlFKUaBVLMmgWR0CO+r3yqdYodX2UKGgGaAloD0MILsvXZfhP+7+UhpRSlGgVSzJoFkdAjvnIfSx7iXV9lChoBmgJaA9DCK4QVmMJK/C/lIaUUpRoFUsyaBZHQI743FzdUKl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (478 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.7545760365668683, "std_reward": 0.7187153198574233, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T17:42:04.120393"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa4612150307ad68b1d379d12a1fa11e97dabd7b129422bbc770ce22db23a34d
3
+ size 3056