File size: 1,708 Bytes
16917d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from typing import Any, Dict
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline

dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16

class EndpointHandler:
    def __init__(self, path=""):

        quantization_config = BitsAndBytesConfig(load_in_8bit=True)
        tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code = True)
        model = AutoModelForCausalLM.from_pretrained(
            path,
            return_dict = True,
            device_map = "auto",
            torch_dtype = dtype,
            trust_remote_code = True,
            quantization_config=quantization_config
        )
        
        gen_config = model.generation_config
        gen_config.max_new_tokens = 256
        gen_config.num_return_sequences = 1
        gen_config.pad_token_id = tokenizer.eos_token_id
        gen_config.eos_token_id = tokenizer.eos_token_id
        
        self.generation_config = gen_config
        
        self.pipeline = pipeline(
            'text-generation', model=model, tokenizer=tokenizer
        )
       
     
      
    def __call__(self, data: Dict[dict, Any]) -> Dict[str, Any]:
        prompt = data.pop("inputs", data)

        instruction = "Create a list of chords,a corresponding scale to improve with, title, and style along with an example in ABC notation based on this input in JSON format."

        full_prompt = f"""<s>
        ### Instruction:
        {instruction}
        ### Input:
        {prompt}
        ### Response: 
        """
        
        result = self.pipeline(full_prompt, generation_config = self.generation_config)[0]
        
        return result