from typing import Any, Dict import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 class EndpointHandler: def __init__(self, path=""): quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code = True) model = AutoModelForCausalLM.from_pretrained( path, return_dict = True, device_map = "auto", torch_dtype = dtype, trust_remote_code = True, quantization_config=quantization_config ) gen_config = model.generation_config gen_config.max_new_tokens = 256 gen_config.num_return_sequences = 1 gen_config.pad_token_id = tokenizer.eos_token_id gen_config.eos_token_id = tokenizer.eos_token_id self.generation_config = gen_config self.pipeline = pipeline( 'text-generation', model=model, tokenizer=tokenizer ) def __call__(self, data: Dict[dict, Any]) -> Dict[str, Any]: prompt = data.pop("inputs", data) instruction = "Create a list of chords,a corresponding scale to improve with, title, and style along with an example in ABC notation based on this input in JSON format." full_prompt = f""" ### Instruction: {instruction} ### Input: {prompt} ### Response: """ result = self.pipeline(full_prompt, generation_config = self.generation_config)[0] return result