File size: 15,898 Bytes
6a1a930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff778e898b0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7ff778f05480>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.dict.Dict'>",
        ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
        "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_np_random": null
    },
    "n_envs": 4,
    "num_timesteps": 1200000,
    "_total_timesteps": 1200000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1677445929863463164,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjfzNPlA2tLx6SAI/jfzNPlA2tLx6SAI/jfzNPlA2tLx6SAI/jfzNPlA2tLx6SAI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkDh7vQs8Hz4uc78/+W6Xv2eiiL8bj9q/h+aSP6oixT9V36a/kHmFv6wZbD9Avw0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqN/M0+UDa0vHpIAj+q2Dc84bNtOkU68DqUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 0.40231743 -0.02199855  0.5089184 ]\n [ 0.40231743 -0.02199855  0.5089184 ]\n [ 0.40231743 -0.02199855  0.5089184 ]\n [ 0.40231743 -0.02199855  0.5089184 ]]",
        "desired_goal": "[[-0.06133324  0.15550248  1.4957025 ]\n [-1.1830741  -1.0674561  -1.7074922 ]\n [ 1.1476601   1.5401204  -1.3036906 ]\n [-1.0427723   0.9222667   0.5536995 ]]",
        "observation": "[[ 0.40231743 -0.02199855  0.5089184   0.01122109  0.00090676  0.00183279]\n [ 0.40231743 -0.02199855  0.5089184   0.01122109  0.00090676  0.00183279]\n [ 0.40231743 -0.02199855  0.5089184   0.01122109  0.00090676  0.00183279]\n [ 0.40231743 -0.02199855  0.5089184   0.01122109  0.00090676  0.00183279]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADbP5PaWgvzzbdok+kXILO8nFrT06Eaw9aN7FPatejD37HB8+cvC9PSXYRD2Dkgk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[0.12192354 0.02339203 0.26848492]\n [0.0021278  0.0848499  0.08401723]\n [0.09661561 0.06853994 0.15538399]\n [0.09274377 0.04805769 0.03358699]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQuxMofMa67+UhpRSlIwBbJRLMowBdJRHQK1WVM0P6Kt1fZQoaAZoCWgPQwgFFOrpI3D0v5SGlFKUaBVLMmgWR0CtVgtorWiDdX2UKGgGaAloD0MIg8KgTKNJ5r+UhpRSlGgVSzJoFkdArVW2gUUO/nV9lChoBmgJaA9DCLBZLhud8+K/lIaUUpRoFUsyaBZHQK1VXollbvB1fZQoaAZoCWgPQwhG7unqjsXcv5SGlFKUaBVLMmgWR0CtV/fVy3kQdX2UKGgGaAloD0MIGZEotKz75b+UhpRSlGgVSzJoFkdArVevfXPJJXV9lChoBmgJaA9DCKcgPxu5buW/lIaUUpRoFUsyaBZHQK1XW1Gb1AZ1fZQoaAZoCWgPQwj7srRTcznhv5SGlFKUaBVLMmgWR0CtVwQ9q1w6dX2UKGgGaAloD0MIPE88ZwsI6r+UhpRSlGgVSzJoFkdArVpIVO9FnnV9lChoBmgJaA9DCGOYE7TJYe+/lIaUUpRoFUsyaBZHQK1aAfukUK11fZQoaAZoCWgPQwgVrHE2HYHov5SGlFKUaBVLMmgWR0CtWa4ekpI+dX2UKGgGaAloD0MI94+F6BC46r+UhpRSlGgVSzJoFkdArVlXG6wt8XV9lChoBmgJaA9DCJOOcjCbAO+/lIaUUpRoFUsyaBZHQK1cXr2QGOd1fZQoaAZoCWgPQwhrRZvj3Cbrv5SGlFKUaBVLMmgWR0CtXBaP0Zm7dX2UKGgGaAloD0MI1EM0uoNY57+UhpRSlGgVSzJoFkdArVvCnNxEOXV9lChoBmgJaA9DCFh1VgvsMdq/lIaUUpRoFUsyaBZHQK1ba9ytFKF1fZQoaAZoCWgPQwgcmUf+YGDrv5SGlFKUaBVLMmgWR0CtXurf1pTNdX2UKGgGaAloD0MIlfCEXn8S77+UhpRSlGgVSzJoFkdArV6kPMB6r3V9lChoBmgJaA9DCLpKd9fZEOW/lIaUUpRoFUsyaBZHQK1eUVPepGZ1fZQoaAZoCWgPQwhkIToEjoTgv5SGlFKUaBVLMmgWR0CtXfphWo3rdX2UKGgGaAloD0MIdQDEXb0K8b+UhpRSlGgVSzJoFkdArWCtLpRoAXV9lChoBmgJaA9DCI+M1eb/Vee/lIaUUpRoFUsyaBZHQK1gY9+PRzB1fZQoaAZoCWgPQwhv8fCeA8vuv5SGlFKUaBVLMmgWR0CtYA7FCLMtdX2UKGgGaAloD0MIeqcC7nn++L+UhpRSlGgVSzJoFkdArV+21MM7VHV9lChoBmgJaA9DCHjxftx++ee/lIaUUpRoFUsyaBZHQK1h1u3trsV1fZQoaAZoCWgPQwjk84qnHmnnv5SGlFKUaBVLMmgWR0CtYY2pZOi4dX2UKGgGaAloD0MIHqSnyCHi6L+UhpRSlGgVSzJoFkdArWE4oLG7z3V9lChoBmgJaA9DCMMN+Pwwwuu/lIaUUpRoFUsyaBZHQK1g4MAFPi11fZQoaAZoCWgPQwi+Ed2zrtHnv5SGlFKUaBVLMmgWR0CtYwgCfYjCdX2UKGgGaAloD0MIiQrVzcXf4b+UhpRSlGgVSzJoFkdArWK+r+5vtXV9lChoBmgJaA9DCJwYkpOJW+K/lIaUUpRoFUsyaBZHQK1iaXoC+111fZQoaAZoCWgPQwgcJa/OMaDgv5SGlFKUaBVLMmgWR0CtYhFqi48VdX2UKGgGaAloD0MIrIxGPq/47L+UhpRSlGgVSzJoFkdArWRd8ohIOHV9lChoBmgJaA9DCMLdWbvtQuW/lIaUUpRoFUsyaBZHQK1kFJHy3Ct1fZQoaAZoCWgPQwjjjGFO0Kbov5SGlFKUaBVLMmgWR0CtY7+6RQrMdX2UKGgGaAloD0MIfy+FB83u9L+UhpRSlGgVSzJoFkdArWNnv+fh/HV9lChoBmgJaA9DCMAlAP+UquS/lIaUUpRoFUsyaBZHQK1ljBO58Sh1fZQoaAZoCWgPQwgzbf/KShPhv5SGlFKUaBVLMmgWR0CtZULW7OE/dX2UKGgGaAloD0MI0sjnFU897L+UhpRSlGgVSzJoFkdArWTt41P3z3V9lChoBmgJaA9DCAAC1qpdU/C/lIaUUpRoFUsyaBZHQK1klc6eXiR1fZQoaAZoCWgPQwiKj0/Iztvsv5SGlFKUaBVLMmgWR0CtZuNTDO1OdX2UKGgGaAloD0MIeSCySBPv6L+UhpRSlGgVSzJoFkdArWaa1stTUHV9lChoBmgJaA9DCFaeQNgpVuS/lIaUUpRoFUsyaBZHQK1mRdyDIzZ1fZQoaAZoCWgPQwgzpIriVVbhv5SGlFKUaBVLMmgWR0CtZe3RG+bmdX2UKGgGaAloD0MIEEHV6NUA7b+UhpRSlGgVSzJoFkdArWgaIcinpHV9lChoBmgJaA9DCPZCAdvBiOW/lIaUUpRoFUsyaBZHQK1n0M4LkS51fZQoaAZoCWgPQwiiJY+n5Qfev5SGlFKUaBVLMmgWR0CtZ3vkili0dX2UKGgGaAloD0MI6PS8GwuK67+UhpRSlGgVSzJoFkdArWckCA+Y+nV9lChoBmgJaA9DCAFPWrisQvK/lIaUUpRoFUsyaBZHQK1pS4ACGN91fZQoaAZoCWgPQwindLD+z2Htv5SGlFKUaBVLMmgWR0CtaQIf0VafdX2UKGgGaAloD0MIGvz9YrZk5b+UhpRSlGgVSzJoFkdArWitRiw0O3V9lChoBmgJaA9DCFUS2QdZFtq/lIaUUpRoFUsyaBZHQK1oVVhkRSR1fZQoaAZoCWgPQwiZZrrXSX3nv5SGlFKUaBVLMmgWR0CtanrgOz6adX2UKGgGaAloD0MIm/9XHTlS67+UhpRSlGgVSzJoFkdArWoxbOeJ53V9lChoBmgJaA9DCHlZEwt8ReS/lIaUUpRoFUsyaBZHQK1p3I9TxXp1fZQoaAZoCWgPQwiSWFLuPkf1v5SGlFKUaBVLMmgWR0CtaYSrgflqdX2UKGgGaAloD0MIzoqoiT4f+L+UhpRSlGgVSzJoFkdArWumP3i71HV9lChoBmgJaA9DCFZ/hGHAkvC/lIaUUpRoFUsyaBZHQK1rXQ4S6Dp1fZQoaAZoCWgPQwgwD5nyIWjzv5SGlFKUaBVLMmgWR0CtawgfdRBNdX2UKGgGaAloD0MI/DcvTnx187+UhpRSlGgVSzJoFkdArWqwJ5VwP3V9lChoBmgJaA9DCJ/m5EUm4P6/lIaUUpRoFUsyaBZHQK1s3siSq2l1fZQoaAZoCWgPQwgEVaNXA5T2v5SGlFKUaBVLMmgWR0CtbJV8kUsWdX2UKGgGaAloD0MIGlBvRs1X5r+UhpRSlGgVSzJoFkdArWxAdZJTVHV9lChoBmgJaA9DCEjBU8iVuvC/lIaUUpRoFUsyaBZHQK1r6G/N7jV1fZQoaAZoCWgPQwiFeY8zTVjqv5SGlFKUaBVLMmgWR0Ctbgx3/xUedX2UKGgGaAloD0MIkgN2NXnK87+UhpRSlGgVSzJoFkdArW3DN2TxG3V9lChoBmgJaA9DCLAEUmLX9vm/lIaUUpRoFUsyaBZHQK1tbkOI68x1fZQoaAZoCWgPQwhMUpliDoLuv5SGlFKUaBVLMmgWR0CtbRZN47iidX2UKGgGaAloD0MIkwGgihs34L+UhpRSlGgVSzJoFkdArW8/5xiobXV9lChoBmgJaA9DCMyWrIpwk+m/lIaUUpRoFUsyaBZHQK1u9rjYI0J1fZQoaAZoCWgPQwgHeNLCZRXnv5SGlFKUaBVLMmgWR0CtbqHk1dgOdX2UKGgGaAloD0MIJxO3CmIg6L+UhpRSlGgVSzJoFkdArW5KExqO93V9lChoBmgJaA9DCDrP2JdsPOK/lIaUUpRoFUsyaBZHQK1wd5FgDzR1fZQoaAZoCWgPQwiKPEm6ZnLkv5SGlFKUaBVLMmgWR0CtcC5Oi35OdX2UKGgGaAloD0MIwD+lSpS95r+UhpRSlGgVSzJoFkdArW/ZSeiBXnV9lChoBmgJaA9DCAFr1a4Jaeu/lIaUUpRoFUsyaBZHQK1vgV1Oj7B1fZQoaAZoCWgPQwjytWeWBCjhv5SGlFKUaBVLMmgWR0CtcaI/7iyZdX2UKGgGaAloD0MInx7bMuCs5r+UhpRSlGgVSzJoFkdArXFZAjY7JXV9lChoBmgJaA9DCPC+Khcqv/C/lIaUUpRoFUsyaBZHQK1xBAqur6t1fZQoaAZoCWgPQwjBbti2KLPyv5SGlFKUaBVLMmgWR0CtcKwdCE6DdX2UKGgGaAloD0MIJm4VxEDX1r+UhpRSlGgVSzJoFkdArXLRXXAdn3V9lChoBmgJaA9DCIW1MXbCi/y/lIaUUpRoFUsyaBZHQK1yiB6KLsN1fZQoaAZoCWgPQwiRm+EGfH70v5SGlFKUaBVLMmgWR0CtcjMmOU+tdX2UKGgGaAloD0MI6YGPwYpT47+UhpRSlGgVSzJoFkdArXHbUExIrnV9lChoBmgJaA9DCBtMw/ARseu/lIaUUpRoFUsyaBZHQK1z+NsFdLR1fZQoaAZoCWgPQwhDBBxClVryv5SGlFKUaBVLMmgWR0Ctc6+GXXyzdX2UKGgGaAloD0MILLZJRWNt7b+UhpRSlGgVSzJoFkdArXNaaiKziXV9lChoBmgJaA9DCDGXVG03wdm/lIaUUpRoFUsyaBZHQK1zAmjTKDF1fZQoaAZoCWgPQwitF0M50a7nv5SGlFKUaBVLMmgWR0Ctdbq0MPSVdX2UKGgGaAloD0MIgUBn0qZq4r+UhpRSlGgVSzJoFkdArXVyLl3hXXV9lChoBmgJaA9DCAHbwYh9AvK/lIaUUpRoFUsyaBZHQK11Hnlnyup1fZQoaAZoCWgPQwh/arx0kxjfv5SGlFKUaBVLMmgWR0CtdMdlVcUudX2UKGgGaAloD0MIoGtfQC9c67+UhpRSlGgVSzJoFkdArXe5guyu6nV9lChoBmgJaA9DCCIAOPbsueW/lIaUUpRoFUsyaBZHQK13cU1yeZp1fZQoaAZoCWgPQwiLU62FWejuv5SGlFKUaBVLMmgWR0Ctdx070WdmdX2UKGgGaAloD0MIUTI5tTNM5r+UhpRSlGgVSzJoFkdArXbGRV6u4nV9lChoBmgJaA9DCFb0h2ae3O2/lIaUUpRoFUsyaBZHQK16TPrOZ9d1fZQoaAZoCWgPQwj/7EeKyDDqv5SGlFKUaBVLMmgWR0CtegSjxkNGdX2UKGgGaAloD0MIAFZHjnQG6L+UhpRSlGgVSzJoFkdArXmyVv/BFnV9lChoBmgJaA9DCJWZ0vpbAui/lIaUUpRoFUsyaBZHQK15XUdaMaV1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 60000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false
}