File size: 11,106 Bytes
f87cafb 4cebcbc f87cafb 4cebcbc cfb4e41 c73516c 85a6da2 37d864e fb091b7 37d864e 6242d3b 0835692 ebe7d3c 0835692 f87cafb 4cebcbc fd2369f 4cebcbc 93edba3 4cebcbc 910d2eb ffebfc3 910d2eb ffebfc3 910d2eb 4cebcbc 910d2eb ffebfc3 910d2eb ffebfc3 910d2eb 4cebcbc 9aec2f2 4f8e3db 4cebcbc 4f8e3db 4cebcbc 4f19e0a 4f8e3db 4cebcbc 4f8e3db 4f19e0a 4cebcbc 4f8e3db 4cebcbc 4f8e3db 4cebcbc 4f8e3db 4cebcbc 4f19e0a 4f8e3db 93edba3 4f19e0a 612d613 0e2aca0 612d613 4cebcbc e2808d7 545eea0 e2808d7 0b80417 fb091b7 0e2aca0 e2808d7 82d6c5a 4cebcbc fb091b7 4cebcbc 82d6c5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
language: en
license: mit
tags:
- keyphrase-extraction
datasets:
- midas/inspec
metrics:
- seqeval
widget:
- text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it. Currently, classical machine learning methods, that use statistics and linguistics, are widely used for the extraction process. The fact that these methods have been widely used in the community has the advantage that there are many easy-to-use libraries. Now with the recent innovations in deep learning methods (such as recurrent neural networks and transformers, GANS, β¦), keyphrase extraction can be improved. These new methods also focus on the semantics and context of a document, which is quite an improvement."
example_title: "Example 1"
- text: "In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (up to 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (up to 4.33 points inF1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition(NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks."
example_title: "Example 2"
model-index:
- name: DeDeckerThomas/keyphrase-extraction-kbir-inspec
results:
- task:
type: keyphrase-extraction
name: Keyphrase Extraction
dataset:
type: midas/inspec
name: inspec
metrics:
- type: seqeval
value: 0.588
name: F1-score
---
** Work in progress **
# π Keyphrase Extraction model: KBIR-inspec
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it.
Currently, classical machine learning methods, that use statistics and linguistics, are widely used for the extraction process. The fact that these methods have been widely used in the community has the advantage that there are many easy-to-use libraries.
Now with the recent innovations in deep learning methods (such as recurrent neural networks and transformers, GANS, β¦), keyphrase extraction can be improved. These new methods also focus on the semantics and context of a document, which is quite an improvement.
## π Model Description
This model is a fine-tuned KBIR model on the Inspec dataset. KBIR or Keyphrase Boundary Infilling with Replacement is a pre-trained model which utilizes a multi-task learning setup for optimizing a combined loss of Masked Language Modeling (MLM), Keyphrase Boundary Infilling (KBI) and Keyphrase Replacement Classification (KRC).
You can find more information about the architecture in this paper: https://arxiv.org/abs/2112.08547.
The model is fine-tuned as a token classification problem where the text is labeled using the BIO scheme.
| Label | Description |
| ----- | ------------------------------- |
| B | At the beginning of a keyphrase |
| I | Inside a keyphrase |
| O | Outside a keyphrase |
Kulkarni, Mayank, Debanjan Mahata, Ravneet Arora, and Rajarshi Bhowmik. "Learning Rich Representation of Keyphrases from Text." arXiv preprint arXiv:2112.08547 (2021).
Sahrawat, Dhruva, Debanjan Mahata, Haimin Zhang, Mayank Kulkarni, Agniv Sharma, Rakesh Gosangi, Amanda Stent, Yaman Kumar, Rajiv Ratn Shah, and Roger Zimmermann. "Keyphrase extraction as sequence labeling using contextualized embeddings." In European Conference on Information Retrieval, pp. 328-335. Springer, Cham, 2020.
## β Intended uses & limitations
### π Limitations
* This keyphrase extraction model is very domain-specific and will perform very well on abstracts of scientific papers. It's not recommended to use this model for other domains, but you are free to test it out.
* Only works for English documents.
* For a custom model, please consult the training notebook for more information (link incoming).
### β How to use
```python
from transformers import (
TokenClassificationPipeline,
AutoModelForTokenClassification,
AutoTokenizer,
)
from transformers.pipelines import AggregationStrategy
import numpy as np
# Define keyphrase extraction pipeline
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
def __init__(self, model, *args, **kwargs):
super().__init__(
model=AutoModelForTokenClassification.from_pretrained(model),
tokenizer=AutoTokenizer.from_pretrained(model),
*args,
**kwargs
)
def postprocess(self, model_outputs):
results = super().postprocess(
model_outputs=model_outputs,
aggregation_strategy=AggregationStrategy.SIMPLE,
)
return np.unique([result.get("word").strip() for result in results])
```
```python
# Load pipeline
model_name = "DeDeckerThomas/keyphrase-extraction-kbir-inspec"
extractor = KeyphraseExtractionPipeline(model=model_name)
```
```python
# Inference
text = """
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a text.
Since this is a time-consuming process, Artificial Intelligence is used to automate it.
Currently, classical machine learning methods, that use statistics and linguistics, are widely used for the extraction process.
The fact that these methods have been widely used in the community has the advantage that there are many easy-to-use libraries.
Now with the recent innovations in deep learning methods (such as recurrent neural networks and transformers, GANS, β¦),
keyphrase extraction can be improved. These new methods also focus on the semantics and context of a document, which is quite an improvement.
""".replace(
"\n", ""
)
keyphrases = extractor(text)
print(keyphrases)
```
```
# Output
['Artificial Intelligence' 'GANS' 'Keyphrase extraction'
'classical machine learning' 'deep learning methods'
'keyphrase extraction' 'linguistics' 'recurrent neural networks'
'semantics' 'statistics' 'text analysis' 'transformers']
```
## π Training Dataset
Inspec is a keyphrase extraction/generation dataset consisting of 2000 English scientific papers from the scientific domains of Computers and Control and Information Technology published between 1998 to 2002. The keyphrases are annotated by professional indexers or editors.
You can find more information here: https://huggingface.co/datasets/midas/inspec
## π·ββοΈ Training procedure
For more in detail information, you can take a look at the training notebook (link incoming).
### Training parameters
| Parameter | Value |
| --------- | ------|
| Learning Rate | 1e-4 |
| Epochs | 50 |
| Early Stopping Patience | 3 |
### Preprocessing
The documents in the dataset are already preprocessed into list of words with the corresponding labels. The only thing that must be done is tokenization and the realignment of the labels so that they correspond with the right subword tokens.
```python
def preprocess_fuction(all_samples_per_split):
tokenized_samples = tokenizer.batch_encode_plus(
all_samples_per_split[dataset_document_column],
padding="max_length",
truncation=True,
is_split_into_words=True,
max_length=max_length,
)
total_adjusted_labels = []
for k in range(0, len(tokenized_samples["input_ids"])):
prev_wid = -1
word_ids_list = tokenized_samples.word_ids(batch_index=k)
existing_label_ids = all_samples_per_split[dataset_biotags_column][k]
i = -1
adjusted_label_ids = []
for wid in word_ids_list:
if wid is None:
adjusted_label_ids.append(lbl2idx["O"])
elif wid != prev_wid:
i = i + 1
adjusted_label_ids.append(lbl2idx[existing_label_ids[i]])
prev_wid = wid
else:
adjusted_label_ids.append(
lbl2idx[
f"{'I' if existing_label_ids[i] == 'B' else existing_label_ids[i]}"
]
)
total_adjusted_labels.append(adjusted_label_ids)
tokenized_samples["labels"] = total_adjusted_labels
return tokenized_samples
```
### Postprocessing
For the post-processing, you will need to filter out the B and I labeled tokens and concat the consecutive B and Is. As last you strip the keyphrase to ensure all spaces are removed.
```python
# Define post_process functions
def concat_tokens_by_tag(keyphrases):
keyphrase_tokens = []
for id, label in keyphrases:
if label == "B":
keyphrase_tokens.append([id])
elif label == "I":
if len(keyphrase_tokens) > 0:
keyphrase_tokens[len(keyphrase_tokens) - 1].append(id)
return keyphrase_tokens
def extract_keyphrases(example, predictions, tokenizer, index=0):
keyphrases_list = [
(id, idx2label[label])
for id, label in zip(
np.array(example["input_ids"]).squeeze().tolist(), predictions[index]
)
if idx2label[label] in ["B", "I"]
]
processed_keyphrases = concat_tokens_by_tag(keyphrases_list)
extracted_kps = tokenizer.batch_decode(
processed_keyphrases,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
return np.unique([kp.strip() for kp in extracted_kps])
```
## π Evaluation results
One of the traditional evaluation methods is the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases.
The model achieves the following results on the Inspec test set:
| Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M |
|:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|
| Inspec Test Set | 0.53 | 0.47 | 0.46 | 0.36 | 0.58 | 0.41 | 0.58 | 0.60 | 0.56 |
For more information on the evaluation process, you can take a look at the keyphrase extraction evaluation notebook.
## π¨ Issues
Please feel free to contact Thomas De Decker for any problems with this model. |