File size: 3,699 Bytes
0dc142a
 
 
 
 
 
5c820d1
0dc142a
 
 
 
 
 
 
5c820d1
0dc142a
5c820d1
8f2837c
5c820d1
0dc142a
 
 
 
 
a8bd3c8
 
 
 
 
 
 
 
5c820d1
a8bd3c8
 
 
 
 
0dc142a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c820d1
0dc142a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: other
tags:
- merge
- mergekit
- lazymergekit
- llama
base_model:
- NousResearch/Meta-Llama-3-8B-Instruct
- mlabonne/OrpoLlama-3-8B
- Locutusque/Llama-3-Orca-1.0-8B
- abacusai/Llama-3-Smaug-8B
---

# ChimeraLlama-3-8B

ChimeraLlama-3-8B outperforms Llama 3 8B Instruct on Nous' benchmark suite.

ChimeraLlama-3-8B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct)
* [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B)
* [Locutusque/Llama-3-Orca-1.0-8B](https://huggingface.co/Locutusque/Llama-3-Orca-1.0-8B)
* [abacusai/Llama-3-Smaug-8B](https://huggingface.co/abacusai/Llama-3-Smaug-8B)

## πŸ† Evaluation

### Nous

Evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval), see the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).

| Model                                                                                                                                                                     |   Average |   AGIEval |   GPT4All | TruthfulQA |  Bigbench |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------: | --------: | --------: | ---------: | --------: |
| [**mlabonne/ChimeraLlama-3-8B**](https://huggingface.co/mlabonne/Chimera-8B) [πŸ“„](https://gist.github.com/mlabonne/28d31153628dccf781b74f8071c7c7e4) | **51.58** | **39.12** | **71.81** | **52.4** | **42.98** |
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [πŸ“„](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) |     51.34 |     41.22 |     69.86 |      51.65 |     42.64 |
| [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/22896a1ae164859931cc8f4858c97f6f)                     | 48.63 | 34.17 | 70.59 | 52.39 | 37.36 |
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [πŸ“„](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847)                   |     45.42 |      31.1 |     69.95 |      43.91 |      36.7 |


## 🧩 Configuration

```yaml
models:
  - model: NousResearch/Meta-Llama-3-8B
    # No parameters necessary for base model
  - model: NousResearch/Meta-Llama-3-8B-Instruct
    parameters:
      density: 0.58
      weight: 0.4
  - model: mlabonne/OrpoLlama-3-8B
    parameters:
      density: 0.52
      weight: 0.2
  - model: Locutusque/Llama-3-Orca-1.0-8B
    parameters:
      density: 0.52
      weight: 0.2
  - model: abacusai/Llama-3-Smaug-8B
    parameters:
      density: 0.52
      weight: 0.2
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
  int8_mask: true
dtype: float16
```

## πŸ’» Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/ChimeraLlama-3-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```