File size: 2,934 Bytes
fec91ca
 
 
 
 
 
 
 
 
1ef3b7a
fec91ca
1ef3b7a
fec91ca
1ef3b7a
8b91aa4
 
 
3aad385
8b91aa4
3aad385
1ef3b7a
 
 
fec91ca
3aad385
 
1ef3b7a
fec91ca
8b91aa4
 
 
 
fec91ca
 
1ef3b7a
 
fec91ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8376f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model:
- NousResearch/Hermes-3-Llama-3.1-8B
library_name: transformers
tags:
- mergekit
- merge

---
# 🪽 Hermes-3-Llama-3.1-8B-lorablated

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/4Hbw5n68jKUSBQeTqQIeT.png)

This is an uncensored version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) using lorablation.

You can see in the following example how Hermes 3 refuses to answer a legitimate question while the abliterated model complies:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/2-ZRBvlZxvIr_Ag_ynNkk.png)

The recipe is based on @grimjim's [grimjim/Llama-3.1-8B-Instruct-abliterated_via_adapter](https://huggingface.co/grimjim/Llama-3.1-8B-Instruct-abliterated_via_adapter) (special thanks):

1. **Extraction**: We extract a LoRA adapter by comparing two models: a censored Llama 3.1 ([meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)) and an abliterated Llama 3.1 ([mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated)).
2. **Merge**: We merge this new LoRA adapter using [task arithmetic](https://arxiv.org/abs/2212.04089) to the censored [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) to abliterate it.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/JdYyK-HLHbyBiHvg-Nvsn.png)

See [this article](https://huggingface.co/blog/mlabonne/abliteration) to learn more about abliteration.

## ⚡ Quantization

* **GGUF**: https://huggingface.co/mlabonne/Hermes-3-Llama-3.1-8B-lorablated-GGUF

## 🧩 Configuration

This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) + Llama-3.1-8B-Instruct-abliterated-LORA as a base.

The following YAML configuration was used to produce this model:

```yaml
base_model: NousResearch/Hermes-3-Llama-3.1-8B+Llama-3.1-8B-Instruct-abliterated-LORA
dtype: bfloat16
merge_method: task_arithmetic
parameters:
  normalize: false
slices:
- sources:
  - layer_range: [0, 32]
    model: NousResearch/Hermes-3-Llama-3.1-8B+Llama-3.1-8B-Instruct-abliterated-LORA
    parameters:
      weight: 1.0
```

You can reproduce this model using the following commands:

```bash
# Setup
git clone https://github.com/arcee-ai/mergekit.git
cd mergekit && pip install -e .
pip install bitsandbytes

# Extraction
mergekit-extract-lora mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated meta-llama/Meta-Llama-3.1-8B-Instruct Llama-3.1-8B-Instruct-abliterated-LORA --rank=64

# Merge using previous config
mergekit-yaml config.yaml Hermes-3-Llama-3.1-8B-lorablated --allow-crimes --lora-merge-cache=./cache
```