Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: teknium/OpenHermes-2.5-Mistral-7B
|
3 |
+
tags:
|
4 |
+
- mistral
|
5 |
+
- instruct
|
6 |
+
- finetune
|
7 |
+
- chatml
|
8 |
+
- gpt4
|
9 |
+
- synthetic data
|
10 |
+
- distillation
|
11 |
+
- dpo
|
12 |
+
- rlhf
|
13 |
+
license: apache-2.0
|
14 |
+
language:
|
15 |
+
- en
|
16 |
+
datasets:
|
17 |
+
- mlabonne/chatml_dpo_pairs
|
18 |
+
---
|
19 |
+
|
20 |
+
<center><img src="https://i.imgur.com/qIhaFNM.png"></center>
|
21 |
+
|
22 |
+
# NeuralHermes 2.5 - Mistral 7B - GGUF
|
23 |
+
|
24 |
+
NeuralHermes is an [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset.
|
25 |
+
|
26 |
+
It is directly inspired by the RLHF process described by [neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. I haven't performed a comprehensive evaluation of the model, but it works great, nothing broken apparently! :)
|
27 |
+
|
28 |
+
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour.
|
29 |
+
|
30 |
+
Link to the original model: [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B).
|
31 |
+
|
32 |
+
Article and code to quantize your own LLMs: [Quantize Llama models with GGUF and llama.cpp](https://mlabonne.github.io/blog/posts/Quantize_Llama_2_models_using_ggml.html)
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend.
|
37 |
+
|
38 |
+
You can also run this model using the following code:
|
39 |
+
|
40 |
+
```python
|
41 |
+
import transformers
|
42 |
+
from transformers import AutoTokenizer
|
43 |
+
|
44 |
+
# Format prompt
|
45 |
+
message = [
|
46 |
+
{"role": "system", "content": "You are a helpful assistant chatbot."},
|
47 |
+
{"role": "user", "content": "What is a Large Language Model?"}
|
48 |
+
]
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(new_model)
|
50 |
+
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
|
51 |
+
|
52 |
+
# Create pipeline
|
53 |
+
pipeline = transformers.pipeline(
|
54 |
+
"text-generation",
|
55 |
+
model=new_model,
|
56 |
+
tokenizer=tokenizer
|
57 |
+
)
|
58 |
+
|
59 |
+
# Generate text
|
60 |
+
sequences = pipeline(
|
61 |
+
prompt,
|
62 |
+
do_sample=True,
|
63 |
+
temperature=0.7,
|
64 |
+
top_p=0.9,
|
65 |
+
num_return_sequences=1,
|
66 |
+
max_length=200,
|
67 |
+
)
|
68 |
+
print(sequences[0]['generated_text'])
|
69 |
+
```
|
70 |
+
|
71 |
+
|
72 |
+
## Training hyperparameters
|
73 |
+
|
74 |
+
**LoRA**:
|
75 |
+
* r=16,
|
76 |
+
* lora_alpha=16,
|
77 |
+
* lora_dropout=0.05,
|
78 |
+
* bias="none",
|
79 |
+
* task_type="CAUSAL_LM",
|
80 |
+
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
|
81 |
+
|
82 |
+
**Training arguments**:
|
83 |
+
* per_device_train_batch_size=4,
|
84 |
+
* gradient_accumulation_steps=4,
|
85 |
+
* gradient_checkpointing=True,
|
86 |
+
* learning_rate=5e-5,
|
87 |
+
* lr_scheduler_type="cosine",
|
88 |
+
* max_steps=200,
|
89 |
+
* optim="paged_adamw_32bit",
|
90 |
+
* warmup_steps=100,
|
91 |
+
|
92 |
+
**DPOTrainer**:
|
93 |
+
* beta=0.1,
|
94 |
+
* max_prompt_length=1024,
|
95 |
+
* max_length=1536,
|