File size: 10,806 Bytes
76efb2d 91ad99e 76efb2d 91ad99e 76efb2d 06bfba1 76efb2d 7e1769b 76efb2d 03887e0 76efb2d f4e4979 76efb2d f4e4979 76efb2d f4e4979 76efb2d f4e4979 76efb2d 91ad99e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
---
language:
- en
license: apache-2.0
tags:
- mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- dpo
- rlhf
- laser
datasets:
- mlabonne/chatml_dpo_pairs
base_model: teknium/OpenHermes-2.5-Mistral-7B
model-index:
- name: NeuralHermes-2.5-Mistral-7B-laser
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.38
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.09
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 54.95
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.14
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.72
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
name: Open LLM Leaderboard
---
<center><img src="https://i.imgur.com/gUlEJuU.jpeg"></center>
# NeuralHermes 2.5 - Mistral 7B - LASER
This is an experimental LASER version of NeuralHermes using [laserRMT](https://github.com/cognitivecomputations/laserRMT), based on [this paper](https://arxiv.org/pdf/2312.13558.pdf).
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)| 43.54| 73.44| 55.26| 42.24| 53.62|
|[NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) | 43.67| 73.24| 55.37| 41.76| 53.51|
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.
NeuralHermes is an [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on several benchmarks (see results).
It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour.
## Results
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |21.26|± | 2.57|
| | |acc_norm|22.83|± | 2.64|
|agieval_logiqa_en | 0|acc |39.32|± | 1.92|
| | |acc_norm|40.71|± | 1.93|
|agieval_lsat_ar | 0|acc |25.65|± | 2.89|
| | |acc_norm|25.65|± | 2.89|
|agieval_lsat_lr | 0|acc |48.82|± | 2.22|
| | |acc_norm|50.00|± | 2.22|
|agieval_lsat_rc | 0|acc |58.36|± | 3.01|
| | |acc_norm|57.25|± | 3.02|
|agieval_sat_en | 0|acc |74.27|± | 3.05|
| | |acc_norm|73.30|± | 3.09|
|agieval_sat_en_without_passage| 0|acc |43.69|± | 3.46|
| | |acc_norm|42.23|± | 3.45|
|agieval_sat_math | 0|acc |37.27|± | 3.27|
| | |acc_norm|36.36|± | 3.25|
Average: 43.54%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |57.76|± | 1.44|
| | |acc_norm|60.32|± | 1.43|
|arc_easy | 0|acc |83.84|± | 0.76|
| | |acc_norm|81.10|± | 0.80|
|boolq | 1|acc |86.70|± | 0.59|
|hellaswag | 0|acc |63.15|± | 0.48|
| | |acc_norm|82.55|± | 0.38|
|openbookqa | 0|acc |34.40|± | 2.13|
| | |acc_norm|45.20|± | 2.23|
|piqa | 0|acc |81.94|± | 0.90|
| | |acc_norm|82.97|± | 0.88|
|winogrande | 0|acc |75.22|± | 1.21|
Average: 73.44%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |37.70|± | 1.70|
| | |mc2 |55.26|± | 1.52|
Average: 55.26%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|53.16|± | 3.63|
|bigbench_date_understanding | 0|multiple_choice_grade|65.31|± | 2.48|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|34.11|± | 2.96|
|bigbench_geometric_shapes | 0|multiple_choice_grade|27.02|± | 2.35|
| | |exact_str_match | 0.28|± | 0.28|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|27.80|± | 2.01|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|19.86|± | 1.51|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|48.33|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|41.40|± | 2.20|
|bigbench_navigate | 0|multiple_choice_grade|50.00|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|65.00|± | 1.07|
|bigbench_ruin_names | 0|multiple_choice_grade|46.21|± | 2.36|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|27.25|± | 1.41|
|bigbench_snarks | 0|multiple_choice_grade|70.72|± | 3.39|
|bigbench_sports_understanding | 0|multiple_choice_grade|65.72|± | 1.51|
|bigbench_temporal_sequences | 0|multiple_choice_grade|30.40|± | 1.46|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.56|± | 1.18|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.09|± | 0.90|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|48.33|± | 2.89|
Average: 42.24%
Average score: 53.62%
## Usage
You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend.
You can also run this model using the following code:
```python
import transformers
from transformers import AutoTokenizer
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model="mlabonne/NeuralHermes-2.5-Mistral-7B-laser",
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__NeuralHermes-2.5-Mistral-7B-laser)
| Metric |Value|
|---------------------------------|----:|
|Avg. |67.29|
|AI2 Reasoning Challenge (25-Shot)|66.38|
|HellaSwag (10-Shot) |85.09|
|MMLU (5-Shot) |63.43|
|TruthfulQA (0-shot) |54.95|
|Winogrande (5-shot) |78.14|
|GSM8k (5-shot) |55.72|
|