File size: 10,806 Bytes
76efb2d
91ad99e
 
 
76efb2d
 
 
 
 
 
 
 
 
 
 
 
 
91ad99e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76efb2d
 
06bfba1
76efb2d
 
 
7e1769b
76efb2d
03887e0
 
 
 
 
 
76efb2d
 
 
 
 
 
 
 
 
 
f4e4979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76efb2d
 
f4e4979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76efb2d
 
f4e4979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76efb2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e4979
76efb2d
 
 
 
 
 
 
 
 
 
 
 
 
91ad99e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
language:
- en
license: apache-2.0
tags:
- mistral
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- dpo
- rlhf
- laser
datasets:
- mlabonne/chatml_dpo_pairs
base_model: teknium/OpenHermes-2.5-Mistral-7B
model-index:
- name: NeuralHermes-2.5-Mistral-7B-laser
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 66.38
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.09
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.43
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 54.95
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 55.72
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B-laser
      name: Open LLM Leaderboard
---

<center><img src="https://i.imgur.com/gUlEJuU.jpeg"></center>

# NeuralHermes 2.5 - Mistral 7B - LASER

This is an experimental LASER version of NeuralHermes using [laserRMT](https://github.com/cognitivecomputations/laserRMT), based on [this paper](https://arxiv.org/pdf/2312.13558.pdf).

|                                                Model                                                 |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)|  43.54|  73.44|     55.26|   42.24|  53.62|
|[NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)            |  43.67|  73.24|     55.37|   41.76|  53.51|

Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.

NeuralHermes is an [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on several benchmarks (see results).

It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.

The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour.

## Results

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |21.26|±  |  2.57|
|                              |       |acc_norm|22.83|±  |  2.64|
|agieval_logiqa_en             |      0|acc     |39.32|±  |  1.92|
|                              |       |acc_norm|40.71|±  |  1.93|
|agieval_lsat_ar               |      0|acc     |25.65|±  |  2.89|
|                              |       |acc_norm|25.65|±  |  2.89|
|agieval_lsat_lr               |      0|acc     |48.82|±  |  2.22|
|                              |       |acc_norm|50.00|±  |  2.22|
|agieval_lsat_rc               |      0|acc     |58.36|±  |  3.01|
|                              |       |acc_norm|57.25|±  |  3.02|
|agieval_sat_en                |      0|acc     |74.27|±  |  3.05|
|                              |       |acc_norm|73.30|±  |  3.09|
|agieval_sat_en_without_passage|      0|acc     |43.69|±  |  3.46|
|                              |       |acc_norm|42.23|±  |  3.45|
|agieval_sat_math              |      0|acc     |37.27|±  |  3.27|
|                              |       |acc_norm|36.36|±  |  3.25|

Average: 43.54%

### GPT4All
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |57.76|±  |  1.44|
|             |       |acc_norm|60.32|±  |  1.43|
|arc_easy     |      0|acc     |83.84|±  |  0.76|
|             |       |acc_norm|81.10|±  |  0.80|
|boolq        |      1|acc     |86.70|±  |  0.59|
|hellaswag    |      0|acc     |63.15|±  |  0.48|
|             |       |acc_norm|82.55|±  |  0.38|
|openbookqa   |      0|acc     |34.40|±  |  2.13|
|             |       |acc_norm|45.20|±  |  2.23|
|piqa         |      0|acc     |81.94|±  |  0.90|
|             |       |acc_norm|82.97|±  |  0.88|
|winogrande   |      0|acc     |75.22|±  |  1.21|

Average: 73.44%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |37.70|±  |  1.70|
|             |       |mc2   |55.26|±  |  1.52|

Average: 55.26%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|53.16|±  |  3.63|
|bigbench_date_understanding                     |      0|multiple_choice_grade|65.31|±  |  2.48|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|34.11|±  |  2.96|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|27.02|±  |  2.35|
|                                                |       |exact_str_match      | 0.28|±  |  0.28|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|27.80|±  |  2.01|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|19.86|±  |  1.51|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|48.33|±  |  2.89|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|41.40|±  |  2.20|
|bigbench_navigate                               |      0|multiple_choice_grade|50.00|±  |  1.58|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|65.00|±  |  1.07|
|bigbench_ruin_names                             |      0|multiple_choice_grade|46.21|±  |  2.36|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|27.25|±  |  1.41|
|bigbench_snarks                                 |      0|multiple_choice_grade|70.72|±  |  3.39|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|65.72|±  |  1.51|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|30.40|±  |  1.46|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|22.56|±  |  1.18|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|17.09|±  |  0.90|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|48.33|±  |  2.89|

Average: 42.24%

Average score: 53.62%

## Usage

You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend.

You can also run this model using the following code:

```python
import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model="mlabonne/NeuralHermes-2.5-Mistral-7B-laser",
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__NeuralHermes-2.5-Mistral-7B-laser)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |67.29|
|AI2 Reasoning Challenge (25-Shot)|66.38|
|HellaSwag (10-Shot)              |85.09|
|MMLU (5-Shot)                    |63.43|
|TruthfulQA (0-shot)              |54.95|
|Winogrande (5-shot)              |78.14|
|GSM8k (5-shot)                   |55.72|