EtashGuha commited on
Commit
4400840
·
verified ·
1 Parent(s): 116027c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -1
README.md CHANGED
@@ -2,6 +2,96 @@
2
  library_name: transformers
3
  tags: []
4
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  This is example code on how to run the chat model.
6
 
7
  ```python
@@ -34,4 +124,32 @@ This is example code on how to run the chat model.
34
  response = response.split("<|endoftext|>")[0]
35
  # Print the response
36
  print(response)
37
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
  tags: []
4
  ---
5
+ ---
6
+ license: apple-ascl
7
+ ---
8
+
9
+
10
+ ---
11
+ license: apple-ascl
12
+ ---
13
+
14
+
15
+
16
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/63118add64939fabc0108b28/BB42g4V8HTxb5dR4tcy8A.png" alt="DCLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
17
+
18
+
19
+ # Model Card for DCLM-IT-7B
20
+
21
+ DCLM-IT-7B is a 7 billion parameter language model trained on the DCLM-Baseline dataset and then further finetuned on our DCLM-IT finetuning mixture. This model is designed to showcase the effectiveness of systematic data curation techniques for improving language model performance.
22
+
23
+ ## Model Details
24
+
25
+ | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
26
+ |------|-----------------|--------|-------------|-----------------|----------------|
27
+ | 7B | 2.508T | 32 | 4096 | 32 | 2048 |
28
+
29
+
30
+ ### Model Description
31
+
32
+ - **Developed by:** DataComp for Language Models (DCLM) Team
33
+ - **Model type:** Decoder-only Transformer language model
34
+ - **Language(s):** English (primarily)
35
+ - **License:** Apple Sample Code License
36
+ - **Contact:** [email protected]
37
+ - **Date:** June 2024
38
+
39
+ ### Model Sources
40
+
41
+ - **Repository:** https://github.com/mlfoundations/dclm
42
+ - **Paper:** [DataComp-LM: In search of the next generation of training sets for language models](https://arxiv.org/abs/2406.11794)
43
+
44
+
45
+ ### Instruction Tuning Details
46
+
47
+ The model was trained using the following setup:
48
+
49
+ - **Architecture:** Decoder-only Transformer
50
+ - **Framework:** PyTorch with OpenLM
51
+ - **Optimizer:** AdamW
52
+ - **Learning Rate:** 2e-5 (peak)
53
+ - **Weight Decay:** 0.1
54
+ - **Batch Size:** 2048 sequences
55
+ - **Sequence Length:** 2048 tokens
56
+ - **Total Training Tokens:** 8.4B
57
+ - **Number of Epochs**: 10
58
+ - **Hardware:** Trained on H100 GPUs
59
+
60
+ For more detailed training information, please refer to Section 3.4 and Appendix F of the DCLM paper.
61
+
62
+
63
+ ## Evaluation
64
+
65
+ Here are the evaluation results for DCLM-Baseline-7B on various tasks (using [llm-foundry](https://github.com/mosaicml/llm-foundry) eval suite)
66
+ | Model | Params | Tokens | CORE | EXTENDED | MMLU | GSM8K |
67
+ |----------------|--------|--------|---------|-----------|------|-------|
68
+ | DCLM-Baseline-7B | 7B | 2.5T | **56.0**| 43.7 | **63.9** | 2.1 |
69
+ | DCLM-IT-7B | 7B | 2.508T | 55.0 | **46.5** | 62.9 | **52.5** |
70
+
71
+ Note: All scores are presented as decimal values between 0 and 1, representing the proportion of correct answers or the model's performance on each task.
72
+
73
+ Moreover, we present our evaluation results on Length-Controlled Alpaca-Eval 2.0 to measure our instruction-following capabilities.
74
+
75
+ | Model | AlpacaEval2.0 LC Win-rate (%) |
76
+ |---------------------------|------------------------------:|
77
+ | **Our runs** | |
78
+ | DCLM-IT-7B | _16.6_ |
79
+ | Mistral-7B w/ OpenHermes 2.5 | 15.4 |
80
+ | DCLM-Baseline-7B w/ OpenHermes 2.5 | 13.8 |
81
+ | **Reported from the leaderboard** | |
82
+ | LLaMA-3-Instruct-8B | **22.9** |
83
+ | Mistral-v0.2-7B | 17.1 |
84
+ | Mistral-7B w/ OpenHermes 2.5 | 16.2 |
85
+ | Zephyr-Beta-7B | 13.2 |
86
+ | Vicuna-v1.3-13B | 10.8 |
87
+ | Gemma-Instruct-7B | 10.4 |
88
+ | Nous-Hermes-13B | 9.7 |
89
+ | DaVinci001 | 9.0 |
90
+ | LLaMA-2-Chat-13B | 8.4 |
91
+ | Alpaca-7B | 5.9 |
92
+
93
+ ## Example Code
94
+
95
  This is example code on how to run the chat model.
96
 
97
  ```python
 
124
  response = response.split("<|endoftext|>")[0]
125
  # Print the response
126
  print(response)
127
+ ```
128
+
129
+
130
+ ## Limitations and Biases
131
+
132
+ While DCLM-Baseline-7B demonstrates strong performance across a range of tasks, it's important to note:
133
+
134
+ 1. The model may exhibit biases present in its training data, which is derived from web crawl data.
135
+ 2. It has not undergone specific alignment or safety fine-tuning, so outputs should be used with caution.
136
+ 3. Performance on tasks not included in the evaluation suite may vary.
137
+ 4. The model's knowledge is limited to its training data cutoff date.
138
+
139
+ ## Ethical Considerations
140
+
141
+ Users should be aware that this model, like all large language models, can potentially generate harmful or biased content. It should not be used for making decisions about individuals or in sensitive applications without appropriate safeguards and human oversight.
142
+
143
+ ## Citation
144
+
145
+ If you use this model in your research, please cite:
146
+
147
+ ```
148
+ @article{Li2024DataCompLM,
149
+ title={DataComp-LM: In search of the next generation of training sets for language models},
150
+ author={Jeffrey Li and Alex Fang and Georgios Smyrnis and Maor Ivgi and Matt Jordan and Samir Gadre and Hritik Bansal and Etash Guha and Sedrick Keh and Kushal Arora and [... full author list]},
151
+ journal={arXiv preprint arXiv:2406.11794},
152
+ year={2024}
153
+ }
154
+ ```
155
+