--- license: apache-2.0 datasets: - stingning/ultrachat - TIGER-Lab/MathInstruct - ise-uiuc/Magicoder-Evol-Instruct-110K - OpenAssistant/oasst2 - teknium/openhermes - bigcode/commitpackft - Open-Orca/SlimOrca - ise-uiuc/Magicoder-OSS-Instruct-75K language: - en library_name: transformers base_model: - mllmTeam/PhoneLM-0.5B --- PhoneLM-0.5B-Instruct is a 0.5 billion parameter decoder-only language model. ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = 'mllmTeam/PhoneLM-0.5B-Instruct' question = "Hello, who are you?" prompt = [{"role": "user", "content": question}] model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cuda', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True) inp = tokenizer(input_text, return_tensors="pt") inp = {k: v.to('cuda') for k, v in inp.items()} out = model.generate(**inp, max_length=256, do_sample=True, temperature=0.7, top_p=0.7 ) text = tokenizer.decode(out[0], skip_special_tokens=True) print(text) ``` ## Model Details * **Developed by**: mllmTeam * **Model type**: `PhoneLM 0.5B` models are auto-regressive language models based on the transformer decoder architecture. * **Language(s)**: English * **Paper**: [PhoneLM Technical Report]() * **Library**: [PhoneLM](https://github.com/UbiquitousLearning/PhoneLM) ### Model Architecture The model is a decoder-only transformer architecture with the following modifications: | Hidden Size | Layers | Heads | Sequence Length | |-------------|--------|-------|-----------------| | 1024 | 24 | 16 | 2048 | * **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf). PhoneLM quantized the sin and cos values in Rotary Position Embeddings to 8-bit integers. * **Normalization**: LayerNorm ([Ba et al., 2016](https://arxiv.org/abs/1607.06450)) with learned bias terms as opposed to RMSNorm ([Zhang & Sennrich, 2019](https://arxiv.org/abs/1910.07467)). * **Biases**: We remove all bias terms from the feed-forward networks and multi-head self-attention layers, except for the biases of the query, key, and value projections ([Bai et al., 2023](https://arxiv.org/abs/2309.16609)). * **ReLU Activation Function**: ReLU([Glorot et al., 2011](https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf)) activation functions are adopted in feed-forward networks. * **Tokenizer**: We use the SmolLM([Allal et al., 2024](https://huggingface.co/blog/smollm))'s tokenizer with a vocabulary size of 49,152. ## License * This repository is released under the [Apache-2.0](https://huggingface.co/mllmTeam/PhoneLM-0.5B-Instruct/blob/main/LICENSE) License.、 ## Citation ``` @misc{yi2024phonelmanefficientcapablesmall, title={PhoneLM:an Efficient and Capable Small Language Model Family through Principled Pre-training}, author={Rongjie Yi and Xiang Li and Weikai Xie and Zhenyan Lu and Chenghua Wang and Ao Zhou and Shangguang Wang and Xiwen Zhang and Mengwei Xu}, year={2024}, eprint={2411.05046}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2411.05046}, } ```