File size: 2,509 Bytes
ad588bf 5dcd81c ad588bf 6f0b189 ad588bf 3cbc7eb ad588bf 78d78f4 ad588bf 6f0b189 ad588bf 80a154c ad588bf 6f0b189 ad588bf 6f0b189 ad588bf 78d78f4 ff3244a 78d78f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: creativeml-openrail-m
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- cvpr
- text-to-image
- image-generation
- compositionality
---
# 🧩 TokenCompose SD21 Model Card
## 🎬CVPR 2024
[TokenCompose_SD21_A](https://mlpc-ucsd.github.io/TokenCompose/) is a [latent text-to-image diffusion model](https://arxiv.org/abs/2112.10752) finetuned from the [**Stable-Diffusion-v2-1**](https://huggingface.co/stabilityai/stable-diffusion-2-1) checkpoint at resolution 768x768 on the [VSR](https://github.com/cambridgeltl/visual-spatial-reasoning) split of [COCO image-caption pairs](https://cocodataset.org/#download) for 32,000 steps with a learning rate of 5e-6. The training objective involves token-level grounding terms in addition to denoising loss for enhanced multi-category instance composition and photorealism. The "_A/B" postfix indicates different finetuning runs of the model using the same above configurations.
# 📄 Paper
Please follow [this](https://arxiv.org/abs/2312.03626) link.
# 🧨Example Usage
We strongly recommend using the [🤗Diffuser](https://github.com/huggingface/diffusers) library to run our model.
```python
import torch
from diffusers import StableDiffusionPipeline
model_id = "mlpc-lab/TokenCompose_SD21_A"
device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
pipe = pipe.to(device)
prompt = "A cat and a wine glass"
image = pipe(prompt).images[0]
image.save("cat_and_wine_glass.png")
```
# ⬆️Improvements over SD21
| Model | Object Accuracy | MG3 COCO | MG4 COCO | MG5 COCO | MG3 ADE20K | MG4 ADE20K | MG5 ADE20K | FID COCO |
|---------------------|-----------------|----------|----------|----------|------------|------------|------------|----------|
| SD21 | 47.82 | 70.14 | 25.57 | 3.27 | 75.13 | 35.07 | 7.16 | 19.59 |
| TokenCompose (SD21) | 60.10 | 80.48 | 36.69 | 5.71 | 79.51 | 39.59 | 8.13 | 19.15 |
# 📰 Citation
```bibtex
@InProceedings{Wang2024TokenCompose,
author = {Wang, Zirui and Sha, Zhizhou and Ding, Zheng and Wang, Yilin and Tu, Zhuowen},
title = {TokenCompose: Text-to-Image Diffusion with Token-level Supervision},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {8553-8564}
}
``` |