File size: 19,100 Bytes
6a3ad5b 555f7ba 6a3ad5b 555f7ba 6a3ad5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
language:
- en
license: mit
tags:
- clip
- vision
---
# CLIP Variants
_The CLIP model was developed by researchers at OpenAI to learn about what contributes to robustness in computer vision tasks. The model was also developed to test the ability of models to generalize to arbitrary image classification tasks in a zero-shot manner. It was not developed for general model deployment - to deploy models like CLIP, researchers will first need to carefully study their capabilities in relation to the specific context theyβre being deployed within._
See the original [CLIP Model Card][clip-model-card] for more details on limitations and biases.
This repository holds [OpenAI's CLIP][clip] models converted into many other variants, see below for more details.
## Disclaimer & License
I haven't done many tests on these conversions. I've briefly tried the float16 versions, which seem very similar to the original float32, however the similarity seems to drop more with the qint8/quint8 versions as expected. I couldn't try qint8 as it seemed unsupported for some operations, but I'm including it for completeness. From a brief test the quint8 version seemed to work fine.
The license for the conversion code is MIT, the license for the models is the same as the original license for the OpenAI models (π€·ββοΈ). I have no affiliation with OpenAI.
## Acknowledgements
* [OpenAI CLIP][clip]
* [OpenAI CLIP JavaScript by josephrocca](https://github.com/josephrocca/openai-clip-js)
* [CLIP-ONNX by Lednik7](https://github.com/Lednik7/CLIP-ONNX)
* [Exporting a Model from PyTorch to ONNX and Running it using ONNX Runtime](https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html)
* [imgbeddings by minimaxir](https://github.com/minimaxir/imgbeddings)
* ... probably more
## Example
See [example.py](./example.py)
```
β― python .\example.py
Loading visual model: models/clip-vit-base-patch32-visual-float16.onnx
Visual inference ready, input size 224, type tensor(float16)
Images shape: (2, 3, 224, 224)
Embeddings shape: (2, 512)
Loading textual model: models/clip-vit-base-patch32-textual-float16.onnx
Textual inference ready, input size 77, type tensor(int32)
Texts shape: (14, 77)
Embeddings shape: (14, 512)
flowers.jpg
similarity bar chart text
------------ ----------- ---------------------------------------------------------------
0.294922 >>>>>>>> a close up photo of a cherry blossom
0.267578 >>>>>>>> cherry blossom
0.249878 >>>>>>> flowers
0.242554 >>>>>>> a photo taken on a bright and sunny day
0.228882 >>>>>> bees
0.222778 >>>>>> plant
0.216187 >>>>>> a photo taken on a dark and cloudy day
0.201538 >>>>>> ruhrgebiet
0.196655 >>>>> processing plant
0.192139 >>>>> a photo taken at midnight
0.18689 >>>>> industry
0.177856 >>>>> cars
0.176636 >>>>> dogs and cats
0.111267 >>> a large industrial plant with many pipes, walkways and railings
heavy-industry.jpg
similarity bar chart text
------------ ----------- ---------------------------------------------------------------
0.336182 >>>>>>>>>> a large industrial plant with many pipes, walkways and railings
0.316895 >>>>>>>>> processing plant
0.302002 >>>>>>>>> industry
0.27417 >>>>>>>> ruhrgebiet
0.254883 >>>>>>> plant
0.22876 >>>>>> a photo taken on a dark and cloudy day
0.219482 >>>>>> a photo taken on a bright and sunny day
0.211304 >>>>>> a photo taken at midnight
0.198608 >>>>> cars
0.190552 >>>>> flowers
0.181885 >>>>> bees
0.180542 >>>>> cherry blossom
0.174438 >>>>> dogs and cats
0.14917 >>>> a close up photo of a cherry blossom
```
## Parameters
The only format supported right now is [Open Neural Network Exchange (ONNX)][onnx].
All the currently available OpenAI models have been converted. Some of the IDs were taken from [Open AI models on Hugging Face](https://huggingface.co/openai), others were made up following the same format.
| Model name | Model ID |
| --- | --- |
| RN50 | resnet-50 |
| RN101 | resnet-101 |
| RN50x4 | resnet-50x4 |
| RN50x16 | resnet-50x16 |
| RN50x64 | resnet-50x64 |
| RN50 | resnet-50 |
| RN50 | resnet-50 |
| RN50 | resnet-50 |
| ViT-B/16 | vit-base-patch16 |
| ViT-B/32 | vit-base-patch32 |
| ViT-L/14 | vit-large-patch14 |
| ViT-L/14@336px | vit-large-patch14-336 |
As CLIP is a multimodal model, the original models are split into two separate "modes", one for processing images
and the other for processing text.
| Mode |
|---------|
| visual |
| textual |
The models were converted into multiple data types as well.
| Data Type |
|-------------|
| float16 |
| qint8 |
| quint8 |
## Variants
| Path | Model ID | Mode | Data Type | Available | Size (MB) |
|--------------------------------------------------------|-----------------------|---------|--------------------|-------------|-------------|
| models/clip-resnet-50-visual.onnx | resnet-50 | visual | float32 (original) | β
| 153 |
| models/clip-resnet-50-visual-float16.onnx | resnet-50 | visual | float16 | β
| 77 |
| models/clip-resnet-50-visual-qint8.onnx | resnet-50 | visual | qint8 | β
| 39 |
| models/clip-resnet-50-visual-quint8.onnx | resnet-50 | visual | quint8 | β
| 39 |
| models/clip-resnet-50-textual.onnx | resnet-50 | textual | float32 (original) | β
| 255 |
| models/clip-resnet-50-textual-float16.onnx | resnet-50 | textual | float16 | β
| 128 |
| models/clip-resnet-50-textual-qint8.onnx | resnet-50 | textual | qint8 | β
| 64 |
| models/clip-resnet-50-textual-quint8.onnx | resnet-50 | textual | quint8 | β
| 64 |
| models/clip-resnet-101-visual.onnx | resnet-101 | visual | float32 (original) | β
| 225 |
| models/clip-resnet-101-visual-float16.onnx | resnet-101 | visual | float16 | β
| 112 |
| models/clip-resnet-101-visual-qint8.onnx | resnet-101 | visual | qint8 | β
| 57 |
| models/clip-resnet-101-visual-quint8.onnx | resnet-101 | visual | quint8 | β
| 57 |
| models/clip-resnet-101-textual.onnx | resnet-101 | textual | float32 (original) | β
| 254 |
| models/clip-resnet-101-textual-float16.onnx | resnet-101 | textual | float16 | β
| 127 |
| models/clip-resnet-101-textual-qint8.onnx | resnet-101 | textual | qint8 | β
| 64 |
| models/clip-resnet-101-textual-quint8.onnx | resnet-101 | textual | quint8 | β
| 64 |
| models/clip-resnet-50x4-visual.onnx | resnet-50x4 | visual | float32 (original) | β
| 348 |
| models/clip-resnet-50x4-visual-float16.onnx | resnet-50x4 | visual | float16 | β
| 174 |
| models/clip-resnet-50x4-visual-qint8.onnx | resnet-50x4 | visual | qint8 | β
| 88 |
| models/clip-resnet-50x4-visual-quint8.onnx | resnet-50x4 | visual | quint8 | β
| 88 |
| models/clip-resnet-50x4-textual.onnx | resnet-50x4 | textual | float32 (original) | β
| 365 |
| models/clip-resnet-50x4-textual-float16.onnx | resnet-50x4 | textual | float16 | β
| 183 |
| models/clip-resnet-50x4-textual-qint8.onnx | resnet-50x4 | textual | qint8 | β
| 92 |
| models/clip-resnet-50x4-textual-quint8.onnx | resnet-50x4 | textual | quint8 | β
| 92 |
| models/clip-resnet-50x16-visual.onnx | resnet-50x16 | visual | float32 (original) | β
| 669 |
| models/clip-resnet-50x16-visual-float16.onnx | resnet-50x16 | visual | float16 | β
| 335 |
| models/clip-resnet-50x16-visual-qint8.onnx | resnet-50x16 | visual | qint8 | β
| 169 |
| models/clip-resnet-50x16-visual-quint8.onnx | resnet-50x16 | visual | quint8 | β
| 169 |
| models/clip-resnet-50x16-textual.onnx | resnet-50x16 | textual | float32 (original) | β
| 495 |
| models/clip-resnet-50x16-textual-float16.onnx | resnet-50x16 | textual | float16 | β
| 248 |
| models/clip-resnet-50x16-textual-qint8.onnx | resnet-50x16 | textual | qint8 | β
| 124 |
| models/clip-resnet-50x16-textual-quint8.onnx | resnet-50x16 | textual | quint8 | β
| 124 |
| models/clip-resnet-50x64-visual.onnx | resnet-50x64 | visual | float32 (original) | β
| 1681 |
| models/clip-resnet-50x64-visual-float16.onnx | resnet-50x64 | visual | float16 | β
| 840 |
| models/clip-resnet-50x64-visual-qint8.onnx | resnet-50x64 | visual | qint8 | β
| 424 |
| models/clip-resnet-50x64-visual-quint8.onnx | resnet-50x64 | visual | quint8 | β
| 424 |
| models/clip-resnet-50x64-textual.onnx | resnet-50x64 | textual | float32 (original) | β
| 812 |
| models/clip-resnet-50x64-textual-float16.onnx | resnet-50x64 | textual | float16 | β
| 406 |
| models/clip-resnet-50x64-textual-qint8.onnx | resnet-50x64 | textual | qint8 | β
| 204 |
| models/clip-resnet-50x64-textual-quint8.onnx | resnet-50x64 | textual | quint8 | β
| 204 |
| models/clip-resnet-50-visual.onnx | resnet-50 | visual | float32 (original) | β
| 153 |
| models/clip-resnet-50-visual-float16.onnx | resnet-50 | visual | float16 | β
| 77 |
| models/clip-resnet-50-visual-qint8.onnx | resnet-50 | visual | qint8 | β
| 39 |
| models/clip-resnet-50-visual-quint8.onnx | resnet-50 | visual | quint8 | β
| 39 |
| models/clip-resnet-50-textual.onnx | resnet-50 | textual | float32 (original) | β
| 255 |
| models/clip-resnet-50-textual-float16.onnx | resnet-50 | textual | float16 | β
| 128 |
| models/clip-resnet-50-textual-qint8.onnx | resnet-50 | textual | qint8 | β
| 64 |
| models/clip-resnet-50-textual-quint8.onnx | resnet-50 | textual | quint8 | β
| 64 |
| models/clip-resnet-50-visual.onnx | resnet-50 | visual | float32 (original) | β
| 153 |
| models/clip-resnet-50-visual-float16.onnx | resnet-50 | visual | float16 | β
| 77 |
| models/clip-resnet-50-visual-qint8.onnx | resnet-50 | visual | qint8 | β
| 39 |
| models/clip-resnet-50-visual-quint8.onnx | resnet-50 | visual | quint8 | β
| 39 |
| models/clip-resnet-50-textual.onnx | resnet-50 | textual | float32 (original) | β
| 255 |
| models/clip-resnet-50-textual-float16.onnx | resnet-50 | textual | float16 | β
| 128 |
| models/clip-resnet-50-textual-qint8.onnx | resnet-50 | textual | qint8 | β
| 64 |
| models/clip-resnet-50-textual-quint8.onnx | resnet-50 | textual | quint8 | β
| 64 |
| models/clip-resnet-50-visual.onnx | resnet-50 | visual | float32 (original) | β
| 153 |
| models/clip-resnet-50-visual-float16.onnx | resnet-50 | visual | float16 | β
| 77 |
| models/clip-resnet-50-visual-qint8.onnx | resnet-50 | visual | qint8 | β
| 39 |
| models/clip-resnet-50-visual-quint8.onnx | resnet-50 | visual | quint8 | β
| 39 |
| models/clip-resnet-50-textual.onnx | resnet-50 | textual | float32 (original) | β
| 255 |
| models/clip-resnet-50-textual-float16.onnx | resnet-50 | textual | float16 | β
| 128 |
| models/clip-resnet-50-textual-qint8.onnx | resnet-50 | textual | qint8 | β
| 64 |
| models/clip-resnet-50-textual-quint8.onnx | resnet-50 | textual | quint8 | β
| 64 |
| models/clip-vit-base-patch16-visual.onnx | vit-base-patch16 | visual | float32 (original) | β
| 345 |
| models/clip-vit-base-patch16-visual-float16.onnx | vit-base-patch16 | visual | float16 | β
| 173 |
| models/clip-vit-base-patch16-visual-qint8.onnx | vit-base-patch16 | visual | qint8 | β
| 87 |
| models/clip-vit-base-patch16-visual-quint8.onnx | vit-base-patch16 | visual | quint8 | β
| 87 |
| models/clip-vit-base-patch16-textual.onnx | vit-base-patch16 | textual | float32 (original) | β
| 254 |
| models/clip-vit-base-patch16-textual-float16.onnx | vit-base-patch16 | textual | float16 | β
| 127 |
| models/clip-vit-base-patch16-textual-qint8.onnx | vit-base-patch16 | textual | qint8 | β
| 64 |
| models/clip-vit-base-patch16-textual-quint8.onnx | vit-base-patch16 | textual | quint8 | β
| 64 |
| models/clip-vit-base-patch32-visual.onnx | vit-base-patch32 | visual | float32 (original) | β
| 352 |
| models/clip-vit-base-patch32-visual-float16.onnx | vit-base-patch32 | visual | float16 | β
| 176 |
| models/clip-vit-base-patch32-visual-qint8.onnx | vit-base-patch32 | visual | qint8 | β
| 89 |
| models/clip-vit-base-patch32-visual-quint8.onnx | vit-base-patch32 | visual | quint8 | β
| 89 |
| models/clip-vit-base-patch32-textual.onnx | vit-base-patch32 | textual | float32 (original) | β
| 254 |
| models/clip-vit-base-patch32-textual-float16.onnx | vit-base-patch32 | textual | float16 | β
| 127 |
| models/clip-vit-base-patch32-textual-qint8.onnx | vit-base-patch32 | textual | qint8 | β
| 64 |
| models/clip-vit-base-patch32-textual-quint8.onnx | vit-base-patch32 | textual | quint8 | β
| 64 |
| models/clip-vit-large-patch14-visual.onnx | vit-large-patch14 | visual | float32 (original) | β
| 1216 |
| models/clip-vit-large-patch14-visual-float16.onnx | vit-large-patch14 | visual | float16 | β
| 608 |
| models/clip-vit-large-patch14-visual-qint8.onnx | vit-large-patch14 | visual | qint8 | β
| 306 |
| models/clip-vit-large-patch14-visual-quint8.onnx | vit-large-patch14 | visual | quint8 | β
| 306 |
| models/clip-vit-large-patch14-textual.onnx | vit-large-patch14 | textual | float32 (original) | β
| 495 |
| models/clip-vit-large-patch14-textual-float16.onnx | vit-large-patch14 | textual | float16 | β
| 247 |
| models/clip-vit-large-patch14-textual-qint8.onnx | vit-large-patch14 | textual | qint8 | β
| 124 |
| models/clip-vit-large-patch14-textual-quint8.onnx | vit-large-patch14 | textual | quint8 | β
| 124 |
| models/clip-vit-large-patch14-336-visual.onnx | vit-large-patch14-336 | visual | float32 (original) | β
| 1217 |
| models/clip-vit-large-patch14-336-visual-float16.onnx | vit-large-patch14-336 | visual | float16 | β
| 609 |
| models/clip-vit-large-patch14-336-visual-qint8.onnx | vit-large-patch14-336 | visual | qint8 | β
| 307 |
| models/clip-vit-large-patch14-336-visual-quint8.onnx | vit-large-patch14-336 | visual | quint8 | β
| 307 |
| models/clip-vit-large-patch14-336-textual.onnx | vit-large-patch14-336 | textual | float32 (original) | β
| 495 |
| models/clip-vit-large-patch14-336-textual-float16.onnx | vit-large-patch14-336 | textual | float16 | β
| 247 |
| models/clip-vit-large-patch14-336-textual-qint8.onnx | vit-large-patch14-336 | textual | qint8 | β
| 124 |
| models/clip-vit-large-patch14-336-textual-quint8.onnx | vit-large-patch14-336 | textual | quint8 | β
| 124 |
[onnx]: https://onnx.ai/
[clip]: https://github.com/openai/CLIP
[clip-model-card]: https://github.com/openai/CLIP/blob/b4ae44927b78d0093b556e3ce43cbdcff422017a/model-card.md
|