File size: 3,275 Bytes
6a3ad5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b98d24d
6a3ad5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from cgitb import text
import os

import clip
import torch.onnx
import torch
from torch import nn
from multiprocessing import Pool

class TextTransformer(nn.Module):
    def __init__(self, clip_model):
        super().__init__()
        self.clip_model = clip_model

    def forward(self, x: torch.Tensor):
        return self.clip_model.encode_text(x)

def export(model, input, path):
    print(f"Exporting to {path}")
    torch.onnx.export(
        model,                     # model being run
        input,                     # model input (or a tuple for multiple inputs)
        path,                      # where to save the model (can be a file or file-like object)
        export_params=True,        # store the trained parameter weights inside the model file
        opset_version=16,          # the ONNX version to export the model to
        do_constant_folding=True,  # whether to execute constant folding for optimization
        input_names = ['input'],   # the model's input names
        output_names = ['output'], # the model's output names
        dynamic_axes={
            'input' : {0 : 'batch_size'},    # variable length axes
            'output' : {0 : 'batch_size'}
        }
    )

def convert(model_name, dashed_name):
    visual_path = f"{output_dir}/clip-{dashed_name}-visual.onnx"
    textual_path = f"{output_dir}/clip-{dashed_name}-textual.onnx"
    visual_exists = os.path.exists(visual_path)
    textual_exists = os.path.exists(textual_path)
    if visual_exists and textual_exists:
        print(f"{visual_path} exists, skipping")
        print(f"{textual_path} exists, skipping")
        return

    print(f"Model: {model_name}")
    print(f"Loading CLIP")
    model, _ = clip.load(model_name, device=device)
    model = model.to(device=device)


    if not visual_exists:
        input_res = model.visual.input_resolution
        export(
            model.visual,
            torch.rand(1, 3, input_res, input_res),
            visual_path,
        )
    else:
        print(f"{visual_path} exists, skipping")

    if not textual_exists:
        text_transformer = TextTransformer(model)
        export(
            text_transformer,
            clip.tokenize(["hello onnx"]).to(device),
            textual_path,
        )
    else:
        print(f"{textual_path} exists, skipping")

device = "cuda" if torch.cuda.is_available() else "cpu"
device = "cpu"
output_dir = "converted"
if __name__ == "__main__":
    print(f"Torch device: {device}")
    
    available_models = clip.available_models()
    print(f"Available models: {available_models}")

    models = [
        ("RN50", "resnet-50"),
        ("RN101", "resnet-101"),
        ("RN50x4", "resnet-50x4"),
        ("RN50x16", "resnet-50x16"),
        ("RN50x64", "resnet-50x64"),
        ("RN50", "resnet-50"),
        ("RN50", "resnet-50"),
        ("RN50", "resnet-50"),
        ("ViT-B/16", "vit-base-patch16"),
        ("ViT-B/32", "vit-base-patch32"),
        ("ViT-L/14", "vit-large-patch14"),
        ("ViT-L/14@336px", "vit-large-patch14-336"),
    ]

    print(f"Converting models: {models}")

    for model in models:
        convert(*model)

    # For converting multiple models at once
    # with Pool(1) as p:
    #     p.starmap(convert, models)

    print("done")