--- license: apache-2.0 datasets: - PrimeIntellect/fineweb-edu - PrimeIntellect/fineweb - PrimeIntellect/StackV1-popular - mlfoundations/dclm-baseline-1.0-parquet - open-web-math/open-web-math - arcee-ai/EvolKit-75K - arcee-ai/Llama-405B-Logits - arcee-ai/The-Tomb - mlabonne/open-perfectblend-fixed - microsoft/orca-agentinstruct-1M-v1-cleaned - Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs - Team-ACE/ToolACE - Synthia-coder - ServiceNow-AI/M2Lingual - AI-MO/NuminaMath-TIR - allenai/tulu-3-sft-personas-code - allenai/tulu-3-sft-personas-math - allenai/tulu-3-sft-personas-math-grade - allenai/tulu-3-sft-personas-algebra language: - en base_model: PrimeIntellect/INTELLECT-1-Instruct pipeline_tag: text-generation tags: - mlx --- # mlx-community/INTELLECT-1-Instruct-6bit The Model [mlx-community/INTELLECT-1-Instruct-6bit](https://huggingface.co/mlx-community/INTELLECT-1-Instruct-6bit) was converted to MLX format from [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) using mlx-lm version **0.20.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/INTELLECT-1-Instruct-6bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```