File size: 1,372 Bytes
d196161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
base_model: HPAI-BSC/Llama3.1-Aloe-Beta-8B
datasets:
- HPAI-BSC/Aloe-Beta-General-Collection
- HPAI-BSC/chain-of-diagnosis
- HPAI-BSC/MedS-Ins
- HPAI-BSC/ultramedical
- HPAI-BSC/pubmedqa-cot-llama31
- HPAI-BSC/medqa-cot-llama31
- HPAI-BSC/medmcqa-cot-llama31
- HPAI-BSC/headqa-cot-llama31
- HPAI-BSC/MMLU-medical-cot-llama31
- HPAI-BSC/Polymed-QA
- HPAI-BSC/Aloe-Beta-General-Collection
- HPAI-BSC/Aloe-Beta-General-Collection
language:
- en
library_name: transformers
license: llama3.1
pipeline_tag: question-answering
tags:
- biology
- medical
- healthcare
- mlx
---
# mlx-community/Llama3.1-Aloe-Beta-8B
The Model [mlx-community/Llama3.1-Aloe-Beta-8B](https://huggingface.co/mlx-community/Llama3.1-Aloe-Beta-8B) was
converted to MLX format from [HPAI-BSC/Llama3.1-Aloe-Beta-8B](https://huggingface.co/HPAI-BSC/Llama3.1-Aloe-Beta-8B)
using mlx-lm version **0.20.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Llama3.1-Aloe-Beta-8B")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|